Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
# ---
# jupyter:
# jupytext:
# text_representation:
# extension: .py
# format_name: light
# format_version: '1.5'
# jupytext_version: 1.11.3
# kernelspec:
# display_name: Python 3
# language: python
# name: python3
# ---
# This python script converts the processed .mat file for native Ceilometer observations into a user-friendly NetCDF file. It also converts all time averaged .mat files into their respecitve netCDF files. These final (four) netCDF files are found in the Bolin Centre Database. Data from the ARTofMELT expedition in Spring 2023. This code is written by Sonja Murto (2024).
# +
# import modules
import sys,glob,os
import numpy as np
import math
import pandas as pd
import matplotlib.dates as mdates
import xarray as xr
import time,datetime
import itertools
import matplotlib.pyplot as plt
import string
import scipy.io
import matplotlib.ticker as mticker
from collections import Counter
#metpy functions for thermodynamical variable conversions
import metpy.calc as mpcalc
from metpy.units import units
import warnings
warnings.filterwarnings('ignore')
# +
# define functions
def datestring_fromtuple(date=(2001,2,15,12)):
'''
Input: a date tuple (YYYY,M,D,h)
Output: Date string: 'YYYYMMDD_hh'
'''
strdate=str(date[0])+"{:0>2}".format(str(date[1]))+"{:0>2}".format(str(date[2]))+'_'+"{:0>2}".format(str(date[3]))
return strdate
def datetuple(date):
'''date is as datetime object, i.e. from pandas using .to_pydatetime()
'''
return date.year,date.month,date.day,date.hour
def strtodatetuple(datestr='19900109_12',format_st='%Y%m%d_%H',returntuple=True):
if returntuple:
return datetuple(datetime.datetime.strptime(datestr, format_st))
else:
return datetime.datetime.strptime(datestr, format_st)
def returndatetime_fromdoy(doys, year=2023):
'''
fucntion to return datetime from DOY dates.
Takes the leap year into account if given for a leap year
Input: list of DOYs
Output: List of Dates (in datetime) corresponding to the given doys
Note, returns in microseconds.
If second rounded: [pd.to_datetime(T).round('1s') for T in date]
'''
jdate_frac=doys
date=[]
for d in jdate_frac:
year,julian = [year,d]
date.append(datetime.datetime(year, 1, 1)+datetime.timedelta(days=julian -1))
return date
def getList(dict):
'''
This function returns a list of keys for a pandas dictionary
'''
list = []
for key in dict.keys():
list.append(key)
return list
def truncate_colormap(cmap, minval=0.0, maxval=1.0, n=100,returncolors=False):
'''
This function creates a new colormap from the cmap chosen, taking the limits from minval and maxval, and the number of colors as n.
The default is a colormap as LinearSegmentedColormap, which can be used as colormap for imshow, contourf...
If you assign returncolors as True, the there will be an array of n amount of colors from the chosen colormap. This can be used in plots when each event has a color (n=50)
'''
new_cmap = mcolors.LinearSegmentedColormap.from_list('new_cmap', plt.get_cmap(cmap)(np.linspace(minval, maxval, n)))
if returncolors:
new_cmap=plt.get_cmap(cmap)(np.linspace(minval, maxval, n))
return new_cmap
# -
#define directories - change according to your computer settings
cwd = os.getcwd()
savefigpath = cwd + '/FIGS/Example_figs/' #directory for figures
#directory where to find the data (.mat files)
load_data = r'/Volumes/My Passport for Mac/MISU_sticka/WORK/viktigapapper/ARTofMELT_2023/AoM_data_mod/WX/cl31_output/'
# # Convert ceilometer data from .mat files into .nc files
# Create secondary dimensions
cloud_layer_levs=np.arange(1,4,1).astype('int32') # 3 levels
sc_layer_levs=np.arange(1,6,1).astype('int32') # 5 levels
range_levs=np.arange(1,771,1).astype('int32') # 770 levels
print(cloud_layer_levs,sc_layer_levs)
# ## 30s data
# load 30s native data
CL_SM_org = scipy.io.loadmat(load_data + 'CL31_ceilometer_ARTofMELT_20230507_20230613_30s_v01.mat',struct_as_record=True) #30s
CL_SM_org.keys()
# get the data in the mat file
Names=CL_SM_org['cl31'].dtype.names
ndata = {n: CL_SM_org['cl31'][n][0, 0] for n in Names}
print(Names)
#create time dimension
Time_steps=returndatetime_fromdoy(np.array(list(itertools.chain.from_iterable(ndata['doy'])),dtype=float))
Times_nomicrosec=[pd.to_datetime(T).round('1s') for T in Time_steps]
Time_steps_dt64_org=[np.datetime64(t) for t in Time_steps]
Time_steps_dt64_org=np.array(Time_steps_dt64_org,dtype='datetime64[ns]') #time dimension
# +
# convert data into pandas dataframes
DF_30s=pd.DataFrame(index=range(len(ndata['doy'])),)
DF_30s['doy']=np.array(list(itertools.chain.from_iterable(ndata['doy'])),dtype=float)
DF_30s['year']=np.array([Times_nomicrosec[i].year for i in range(len(Time_steps))],dtype=int)
DF_30s['month']=np.array([Times_nomicrosec[i].month for i in range(len(Time_steps))],dtype=int)
DF_30s['day']=np.array([Times_nomicrosec[i].day for i in range(len(Time_steps))],dtype=int)
DF_30s['hour']=np.array([Times_nomicrosec[i].hour for i in range(len(Time_steps))],dtype=int)
DF_30s['minute']=np.array([Times_nomicrosec[i].minute for i in range(len(Time_steps))],dtype=int)
DF_30s['second']=np.array([Times_nomicrosec[i].second for i in range(len(Time_steps))],dtype=int)
DF_30s['cloudcode']=np.array(list(itertools.chain.from_iterable(ndata['cloudcode'])),dtype=int)
DF_30s['vert_vis']=np.array(list(itertools.chain.from_iterable(ndata['vert_vis'])),dtype=float)
DF_30s['high_sig']=np.array(list(itertools.chain.from_iterable(ndata['high_sig'])),dtype=float)
DF_30s.head()
# -
#check for nans - no nans!
DF_30s.iloc[DF_30s[DF_30s.doy.isna()].index]
#get a list of columns
DF_30s.columns
# +
# save each variable into Data Arrays, with attribute data
#1D variables: dimension time
da_doy=xr.DataArray(data=np.array(DF_30s['doy']).astype('float32'),name="day_of_year",
dims=["time"],coords=dict(time=Time_steps_dt64_org),
attrs=dict(type="float32",dimension="time",units="1",long_name="Day of Year",
description="time as decimal day of year"),) #added as 1D
#date and time in separate arrays; microseconds approximated to seconds
da_year=xr.DataArray(data=np.array(DF_30s['year']).astype('int32'),name="year",dims=["time"],
coords=dict(time=Time_steps_dt64_org),
attrs=dict(type="int32",dimension="time",units="1",long_name="Year"),) #added as 1D
da_month=xr.DataArray(data=np.array(DF_30s['month']).astype('int32'),name="month",dims=["time"],
coords=dict(time=Time_steps_dt64_org),
attrs=dict(type="int32",dimension="time",units="1", long_name="Month"),) #added as 1D
da_day=xr.DataArray(data=np.array(DF_30s['day']).astype('int32'),name="day",dims=["time"],
coords=dict(time=Time_steps_dt64_org),
attrs=dict(type="int32",dimension="time",units="1",long_name="Day"),) #added as 1D
da_hour=xr.DataArray(data=np.array(DF_30s['hour']).astype('int32'),name="hour",dims=["time"],
coords=dict(time=Time_steps_dt64_org),
attrs=dict(type="int32",dimension="time",units="1",long_name="Hour"),) #added as 1D
da_min=xr.DataArray(data=np.array(DF_30s['minute']).astype('int32'),name="minute",dims=["time"],
coords=dict(time=Time_steps_dt64_org),
attrs=dict(type="int32",dimension="time",units="1",long_name="Minute"),) #added as 1D
da_sec=xr.DataArray(data=np.array(DF_30s['second']).astype('int32'),name="second",dims=["time"],
coords=dict(time=Time_steps_dt64_org),
attrs=dict(type="int32",dimension="time",units="1",long_name="Second",
description="Time averaged to closest second"),) #added as 1D
#add cloudcode flag
da_cloudcode=xr.DataArray(data=np.array(DF_30s['cloudcode']).astype('int32'),name="flag_cloudcode",dims=["time"],
coords=dict(time=Time_steps_dt64_org),
attrs=dict(type="int32",dimension="time",units="1",
long_name='Data flag: Cloudcode',
flag_values="-1,0,1,2,3,4",
flag_meanings="missing_data\nno_significant_backscatter\none_cloud_base_detected\ntwo_cloud_bases_detected\nthree_cloud_bases_detected\nfull_obscuration",
description="Code for number of cloud bases detected; see Readme document for more information"),)
da_vertvis=xr.DataArray(data=np.array(DF_30s['vert_vis']).astype('float32'),
name="vertical_visibility",dims=["time"],coords=dict(time=Time_steps_dt64_org),
attrs=dict(type="float32",dimension="time", units="m",
long_name="Vertical Visibilility",
description="Vertical visibility given in case of obscured cloud base (at flag_cloudcode 4), else NaN"),) #added as 1D
da_high_sig=xr.DataArray(data=np.array(DF_30s['high_sig']).astype('float32'),
name="highest_detected_signal",dims=["time"],coords=dict(time=Time_steps_dt64_org),
attrs=dict(type="float32",dimension="time", units="m",
long_name="Highest Signal Detected",
description="Highest signal detected given in case of obscured cloud base (at flag_cloudcode 4), else NaN"),) #added as 1D
#1D: dimension range_levels
da_ceilrange=xr.DataArray(data=np.array(list(itertools.chain.from_iterable(ndata['ceil_range'])),dtype=int).astype('int32'),
name="ceilometer_range",dims=["range_levels"],coords=dict(range_levels=range_levs),
attrs=dict(type="int32",dimension="range_levels",units="m",
long_name="Ceilometer Range",
description="Ranges for the ceilometer backscatter profile, including the instrument height",),) #added as 1D
#2D variable: dimension time/cloud_layer
da_baseht=xr.DataArray(data=np.array(ndata['base_ht'],dtype=float).astype('float32'),
name="cloud_base_altitude",dims=["time","cloud_layer"],
coords=dict(time=Time_steps_dt64_org,cloud_layer=cloud_layer_levs),
attrs=dict(type="float32",dimension="time, cloud_layer", units="m",
long_name="Cloud Base Altitude",
description="cloud base height of 1-3 cloud layers; NaN if no layer detected. " +\
"Instrument height incorporated."),) #added as 2D
#2D variables: dimension time/sky_condition_layer
da_scfrac=xr.DataArray(data=np.array(ndata['sc_frac'],dtype=float).astype('float32'),
name="sky_condition_cloud_fraction",dims=["time","sky_condition_layer"],
coords=dict(time=Time_steps_dt64_org,sky_condition_layer=sc_layer_levs),
attrs=dict(type="float32",dimension="time, sky_condition_layer", units="octal",
long_name="Sky Condition Cloud Fraction",
description="Cloud fraction calculated with the sky condition algorithm. "+\
"0-8 = cloud coverage of up to 5 levels; 9 = obscuration. " +\
"NaN = missing data or no detected layer."),) #added as 2D
da_scht=xr.DataArray(data=np.array(ndata['sc_ht'],dtype=float).astype('float32'),
name="sky_condition_cloud_altitude",dims=["time","sky_condition_layer"],
coords=dict(time=Time_steps_dt64_org,sky_condition_layer=sc_layer_levs),
attrs=dict(type="float32",dimension="time, sky_condition_layer", units="m",
long_name="Sky Condition Cloud Altitude layer height",
description = "Cloud layer height calculated with the sky condition algorithm. "+\
"Cloud layer height given for 1-5 sky condition layers; NaN if no layer detected. "+\
"Vertical visibility is reported as height if obscuration (at sky_condition_cloud_fraction 9). "+\
"Instrument height incorporated."),) #added as 2D
#2D variable: dimension time/range
da_bsprof=xr.DataArray(data=np.array(ndata['bs_prof'],dtype=float).astype('float32'),
name="backscatter_profile",dims=["time","range_levels"],
coords=dict(time=Time_steps_dt64_org,range_levels=range_levs),
attrs=dict(type="float32",dimension="time, range_levels", units="1 km-1 steradians-1",
long_name="Backscatter Profile", description="backscatter coefficient profile"),) #added as 2D
# +
# quick plot of cloud base heights
da_baseht.sel(cloud_layer=1).plot(color='r',label='cloud_layer = 1')
da_baseht.sel(cloud_layer=2).plot(color='b',label='cloud_layer = 2')
da_baseht.sel(cloud_layer=3).plot(color='y',label='cloud_layer = 3')
plt.title('')
plt.legend()
plt.show()
# +
#merge all arrays into one
ds_all=xr.merge([da_doy,da_year,da_month,da_day,da_hour,da_min,da_sec,
da_ceilrange,da_cloudcode,da_vertvis,da_high_sig,
da_baseht,da_scfrac,da_scht,da_bsprof])
len(ds_all)
# -
plt.scatter(ds_all.time,ds_all.vertical_visibility,c=ds_all.flag_cloudcode)
plt.colorbar()
#get the time ranges: start
Times_nomicrosec[0]
#get the time ranges: end
Times_nomicrosec[-1]
# +
# add global attribute data. Note that the geospatial_bounds are taken from the gps data at the weather station sensor
# (Weather station data: start: 2023-05-01 7:00:05, end = 2023-06-13 16:24:35)
ds_all.attrs = {"Conventions" :"CF-1.8",
"source" : "Ceilometer",
"instrument_model" : "Vaisala Ceilometer CL31",
"creator_name" : "Sonja Murto",
"creator_email" : "sonja.murto@misu.su.se",
"creator_url" : "https://orcid.org/0000-0002-4966-9077",
"institution" : "Stockholm University",
"processing_software" : "Matlab (for creating the matlab file) and a jupyter notebook script (netCDF)",
"sampling_interval": "30s",
"product_version" : "v01",
"last_revised_date" : "2024-05-31T15:00:00",
"project" : "ARTofMELT",
"project_principal_investigator" : "Michael Tjernström",
"project_principal_investigator_email" : "michaelt@misu.su.se",
"project_principal_investigator_url" : "https://orcid.org/0000-0002-6908-7410",
"acknowledgement" : " Knut och Alice Wallenbergs Stiftelse, Grant 2016-0024",
"platform" : "Swedish Icebreaker Oden",
"platform_type" : "On Oden's 7th deck above the bridge",
"deployment_mode" : "ship",
"title" : "Ceilometer cloud base height, vertical visibility and backscatter profiles",
"feature_type" : "time series",
"time_coverage_start" : "2023-05-07T00:00:22",
"time_coverage_end" : "2023-06-13T16:24:22",
"geospatial_bounds" : "80.52392166666667N, -3.8737749999999997E, 78.04355166666666N, 15.660881666666667E",
"platform_altitude" : "Located at approximately 25 m a.s.l",
"location_keywords": "Oden, Arctic Ocean, Fram Strait, atmosphere, on the ship",
"comments" : "This file consists of ceilometer data " +\
"measured with the Vaisala Ceilometer CL31 that was located on the 7th deck, "+\
"above the bridge (at approximately 25m)." + \
"The sky condition measurements are time averages to represent an area average. " + \
"The vertical resolution is 10m * 770, but the measurement height (25m) is included in the backscatter profile ranges, " + \
"as well as in the cloud base heights (cloud_base_altitude and sky_condition_cloud_altitude). " + \
"Geospatial bounds are taken from the gps location of the weather station dataset located on Oden. " +\
"Time variables month, day, hour, minute and second are approximated to the nearest second. " +\
"Data produced by Sonja Murto. See the document - Readme_CL.txt - for more details."}
# -
ds_all
# Save to netCDF
ds_all.to_netcdf(load_data + 'CL31_ceilometer_ARTofMELT_20230507_20230613_30s_v01.nc')
# ## Create netCDF from 1 min average files - remove times with no data points
CL_SM_avg = scipy.io.loadmat(load_data + 'CL31_ceilometer_ARTofMELT_20230507_20230613_1min_v01.mat',struct_as_record=True)
CL_SM_avg.keys()
# get the data in the mat file
Names=CL_SM_avg['cl31_av'].dtype.names
ndata = {n: CL_SM_avg['cl31_av'][n][0, 0] for n in Names}
print(Names)
# +
# create pandas dataframe from the data
# 1D variables
DF_1min=pd.DataFrame(index=range(len(ndata['doy'])),)
DF_1min['doy']=np.array(list(itertools.chain.from_iterable(ndata['doy'])),dtype=float)
DF_1min['cloudcode']=np.array(list(itertools.chain.from_iterable(ndata['cloudcode'])),dtype=float)
DF_1min['vert_vis']=np.array(list(itertools.chain.from_iterable(ndata['vert_vis'])),dtype=float)
DF_1min['high_sig']=np.array(list(itertools.chain.from_iterable(ndata['high_sig'])),dtype=float)
#2D cloudlayer
DF_1min_cloudbh=pd.DataFrame(index=range(len(ndata['doy'])),data=np.array(ndata['base_ht'],dtype=float))
#2D sc_layer_ht
DF_1min_scht=pd.DataFrame(index=range(len(ndata['doy'])),data=np.array(ndata['sc_ht'],dtype=float))
#2D sc_layer_frac
DF_1min_scfrac=pd.DataFrame(index=range(len(ndata['doy'])),data=np.array(ndata['sc_frac'],dtype=float))
#2D ranges
DF_1min_range=pd.DataFrame(index=range(len(ndata['doy'])),data=np.array(ndata['bs_prof'],dtype=float))
# -
len(DF_1min)
#check for NaNs
selection = DF_1min.iloc[DF_1min[~DF_1min.doy.isna()].index].index.values # size with no nans
idx_nan = DF_1min.iloc[DF_1min[DF_1min.doy.isna()].index].index.values # length of nan times
print(len(selection),len(idx_nan))
#select only no-nan times; for all 5 pandas dataframes
DF_1min=DF_1min.iloc[selection].reset_index(drop=True)
DF_1min_cloudbh=DF_1min_cloudbh.iloc[selection].reset_index(drop=True)
DF_1min_scht=DF_1min_scht.iloc[selection].reset_index(drop=True)
DF_1min_scfrac=DF_1min_scfrac.iloc[selection].reset_index(drop=True)
DF_1min_range=DF_1min_range.iloc[selection].reset_index(drop=True)
#check for right length
print(len(DF_1min),len(DF_1min_cloudbh),len(DF_1min_scfrac),len(DF_1min_scht),len(DF_1min_range))
DF_1min.iloc[DF_1min[DF_1min.doy.isna()].index] #check again for NaNs - empty!
# set time dimension
Time_steps=returndatetime_fromdoy(np.array(DF_1min.doy.values,dtype=float))
Times_nomicrosec=[pd.to_datetime(T).round('1s') for T in Time_steps]
Time_steps_dt64_org=[np.datetime64(t) for t in Time_steps]
Time_steps_dt64_org=np.array(Time_steps_dt64_org,dtype='datetime64[ns]')
# add date values
DF_1min['year']=np.array([Times_nomicrosec[i].year for i in range(len(Time_steps))],dtype=int)
DF_1min['month']=np.array([Times_nomicrosec[i].month for i in range(len(Time_steps))],dtype=int)
DF_1min['day']=np.array([Times_nomicrosec[i].day for i in range(len(Time_steps))],dtype=int)
DF_1min['hour']=np.array([Times_nomicrosec[i].hour for i in range(len(Time_steps))],dtype=int)
DF_1min['minute']=np.array([Times_nomicrosec[i].minute for i in range(len(Time_steps))],dtype=int)
DF_1min['second']=np.array([Times_nomicrosec[i].second for i in range(len(Time_steps))],dtype=int)
# +
# create xr DataArrays
#1D: dimension time
da_doy=xr.DataArray(data=np.array(DF_1min['doy']).astype('float32'),name="day_of_year",
dims=["time"],coords=dict(time=Time_steps_dt64_org),
attrs=dict(type="float32",dimension="time",units="1",long_name="Day of Year",
description="time as decimal day of year"),) #added as 1D
#date and time in separate arrays; microseconds approximated to seconds
da_year=xr.DataArray(data=np.array(DF_1min['year']).astype('int32'),name="year",dims=["time"],
coords=dict(time=Time_steps_dt64_org),
attrs=dict(type="int32",dimension="time",units="1",long_name="Year"),) #added as 1D
da_month=xr.DataArray(data=np.array(DF_1min['month']).astype('int32'),name="month",dims=["time"],
coords=dict(time=Time_steps_dt64_org),
attrs=dict(type="int32",dimension="time",units="1", long_name="Month"),) #added as 1D
da_day=xr.DataArray(data=np.array(DF_1min['day']).astype('int32'),name="day",dims=["time"],
coords=dict(time=Time_steps_dt64_org),
attrs=dict(type="int32",dimension="time",units="1",long_name="Day"),) #added as 1D
da_hour=xr.DataArray(data=np.array(DF_1min['hour']).astype('int32'),name="hour",dims=["time"],
coords=dict(time=Time_steps_dt64_org),
attrs=dict(type="int32",dimension="time",units="1",long_name="Hour"),) #added as 1D
da_min=xr.DataArray(data=np.array(DF_1min['minute']).astype('int32'),name="minute",dims=["time"],
coords=dict(time=Time_steps_dt64_org),
attrs=dict(type="int32",dimension="time",units="1",long_name="Minute"),) #added as 1D
da_sec=xr.DataArray(data=np.array(DF_1min['second']).astype('int32'),name="second",dims=["time"],
coords=dict(time=Time_steps_dt64_org),
attrs=dict(type="int32",dimension="time",units="1",long_name="Second",
description="Time averaged to closest second"),) #added as 1D
#add cloudcode flag
da_cloudcode=xr.DataArray(data=np.array(DF_1min['cloudcode']).astype('int32'),name="flag_cloudcode",dims=["time"],
coords=dict(time=Time_steps_dt64_org),
attrs=dict(type="int32",dimension="time",units="1",
long_name='Data flag: Cloudcode',
flag_values="-1,0,1,2,3,4",
flag_meanings="missing_data\nno_significant_backscatter\none_cloud_base_detected\ntwo_cloud_bases_detected\nthree_cloud_bases_detected\nfull_obscuration",
description="Code for number of cloud bases detected; see Readme document for more information"),)
da_vertvis=xr.DataArray(data=np.array(DF_1min['vert_vis']).astype('float32'),
name="vertical_visibility",dims=["time"],coords=dict(time=Time_steps_dt64_org),
attrs=dict(type="float32",dimension="time", units="m",
long_name="Vertical Visibilility",
description="Vertical visibility given in case of obscured cloud base (at flag_cloudcode 4), else NaN"),) #added as 1D
da_high_sig=xr.DataArray(data=np.array(DF_1min['high_sig']).astype('float32'),
name="highest_detected_signal",dims=["time"],coords=dict(time=Time_steps_dt64_org),
attrs=dict(type="float32",dimension="time", units="m",
long_name="Highest Signal Detected",
description="Highest signal detected given in case of obscured cloud base (at flag_cloudcode 4), else NaN"),) #added as 1D
#1D: dimension range_levels
da_ceilrange=xr.DataArray(data=np.array(list(itertools.chain.from_iterable(ndata['ceil_range'])),dtype=int).astype('int32'),
name="ceilometer_range",dims=["range_levels"],coords=dict(range_levels=range_levs),
attrs=dict(type="int32",dimension="range_levels",units="m",
long_name="Ceilometer Range",
description="Ranges for the ceilometer backscatter profile, including the instrument height",),) #added as 1D
#2D: dimension time/cloud_layer
da_baseht=xr.DataArray(data=np.array(DF_1min_cloudbh,dtype=float).astype('float32'),
name="cloud_base_altitude",dims=["time","cloud_layer"],
coords=dict(time=Time_steps_dt64_org,cloud_layer=cloud_layer_levs),
attrs=dict(type="float32",dimension="time, cloud_layer", units="m",
long_name="Cloud Base Altitude",
description="cloud base height of 1-3 cloud layers; NaN if no layer detected. " +\
"Instrument height incorporated."),) #added as 2D
#2D: dimension time/sky_condition_layer
da_scfrac=xr.DataArray(data=np.array(DF_1min_scfrac,dtype=float).astype('float32'),
name="sky_condition_cloud_fraction",dims=["time","sky_condition_layer"],
coords=dict(time=Time_steps_dt64_org,sky_condition_layer=sc_layer_levs),
attrs=dict(type="float32",dimension="time, sky_condition_layer", units="octal",
long_name="Sky Condition Cloud Fraction",
description="Cloud fraction calculated with the sky condition algorithm. "+\
"0-8 = cloud coverage of up to 5 levels; 9 = obscuration. " +\
"NaN = missing data or no detected layer."),) #added as 2D
da_scht=xr.DataArray(data=np.array(DF_1min_scht,dtype=float).astype('float32'),
name="sky_condition_cloud_altitude",dims=["time","sky_condition_layer"],
coords=dict(time=Time_steps_dt64_org,sky_condition_layer=sc_layer_levs),
attrs=dict(type="float32",dimension="time, sky_condition_layer", units="m",
long_name="Sky Condition Cloud Altitude layer height",
description = "Cloud layer height calculated with the sky condition algorithm. "+\
"Cloud layer height given for 1-5 sky condition layers; NaN if no layer detected. "+\
"Vertical visibility is reported as height if obscuration (at sky_condition_cloud_fraction 9). "+\
"Instrument height incorporated."),) #added as 2D
#2D: dimension time/range
da_bsprof=xr.DataArray(data=np.array(DF_1min_range,dtype=float).astype('float32'),
name="backscatter_profile",dims=["time","range_levels"],
coords=dict(time=Time_steps_dt64_org,range_levels=range_levs),
attrs=dict(type="float32",dimension="time, range_levels", units="1 km-1 steradians-1",
long_name="Backscatter Profile", description="backscatter coefficient profile"),) #added as 2D
# +
#merge all arrays into one
ds_all=xr.merge([da_doy,da_year,da_month,da_day,da_hour,da_min,da_sec,
da_ceilrange,da_cloudcode,da_vertvis,da_high_sig,
da_baseht,da_scfrac,da_scht,da_bsprof])
len(ds_all)
# -
#get time range - start
Times_nomicrosec[0]
#get time range - end
Times_nomicrosec[-1]
# +
# modify attributes (start/end time and text in comments);
# note again geospatial bounds from the weather station data
ds_all.attrs = {"Conventions" :"CF-1.8",
"source" : "Ceilometer",
"instrument_model" : "Vaisala Ceilometer CL31",
"creator_name" : "Sonja Murto",
"creator_email" : "sonja.murto@misu.su.se",
"creator_url" : "https://orcid.org/0000-0002-4966-9077",
"institution" : "Stockholm University",
"processing_software" : "Matlab (for creating the matlab file) and a jupyter notebook script (netCDF)",
"sampling_interval": "original 30s; here 1min averages",
"product_version" : "v01",
"last_revised_date" : "2024-05-31T15:00:00",
"project" : "ARTofMELT",
"project_principal_investigator" : "Michael Tjernström",
"project_principal_investigator_email" : "michaelt@misu.su.se",
"project_principal_investigator_url" : "https://orcid.org/0000-0002-6908-7410",
"acknowledgement" : " Knut och Alice Wallenbergs Stiftelse, Grant 2016-0024",
"platform" : "Swedish Icebreaker Oden",
"platform_type" : "On Oden's 7th deck above the bridge",
"deployment_mode" : "ship",
"title" : "Ceilometer cloud base height, vertical visibility and backscatter profiles",
"feature_type" : "time series",
"time_coverage_start" : "2023-05-07T00:00:52",
"time_coverage_end" : "2023-06-13T16:23:37",
"geospatial_bounds" : "80.52392166666667N, -3.8737749999999997E, 78.04355166666666N, 15.660881666666667E",
"platform_altitude" : "Located at approximately 25 m a.s.l",
"location_keywords": "Oden, Arctic Ocean, Fram Strait, atmosphere, on the ship",
"comments" : "This file consists of 1 min averages of ceilometer data " +\
"measured with the Vaisala Ceilometer CL31 that was located on the 7th deck, "+\
"above the bridge (at approximately 25m)." + \
"The sky condition measurements are time averages to represent an area average. " + \
"The vertical resolution is 10m * 770, but the measurement height (25m) is included in the backscatter profile ranges, " + \
"as well as in the cloud base heights (cloud_base_altitude and sky_condition_cloud_altitude). " + \
"Geospatial bounds are taken from the gps location of the weather station dataset located on Oden. " +\
"Time variables month, day, hour, minute and second are approximated to the nearest second. " +\
"Data produced by Sonja Murto. See the document - Readme_CL.txt - for more details."}
# -
ds_all
#save to netCDF
ds_all.to_netcdf(load_data + 'CL31_ceilometer_ARTofMELT_20230507_20230613_1min_v01.nc')
# +
#test plot
ds_all.sel(cloud_layer=1).cloud_base_altitude.plot(color='r',label='cloud_layer = 1')
ds_all.sel(cloud_layer=2).cloud_base_altitude.plot(color='b',label='cloud_layer = 2')
ds_all.sel(cloud_layer=3).cloud_base_altitude.plot(color='y',label='cloud_layer = 3')
plt.title('')
plt.legend()
plt.show()
# +
ds_all.sel(sky_condition_layer=1).sky_condition_cloud_altitude.plot(color='r',label='sky_condition_layer = 1')
ds_all.sel(sky_condition_layer=2).sky_condition_cloud_altitude.plot(color='b',label='sky_condition_layer = 2')
ds_all.sel(sky_condition_layer=3).sky_condition_cloud_altitude.plot(color='y',label='sky_condition_layer = 3')
ds_all.sel(sky_condition_layer=4).sky_condition_cloud_altitude.plot(color='g',label='sky_condition_layer = 4')
ds_all.sel(sky_condition_layer=5).sky_condition_cloud_altitude.plot(color='k',label='sky_condition_layer = 5')
plt.title('')
plt.legend()
plt.show()
# -
# ## Create netCDF from 10 min average files - remove times with no data points
CL_SM_avg = scipy.io.loadmat(load_data + 'CL31_ceilometer_ARTofMELT_20230507_20230613_10min_v01.mat',struct_as_record=True)
CL_SM_avg.keys()
# get the data in the mat file
Names=CL_SM_avg['cl31_av'].dtype.names
ndata = {n: CL_SM_avg['cl31_av'][n][0, 0] for n in Names}
print(Names)
# +
# create pandas dataframe from the data
# 1D variables
DF_10min=pd.DataFrame(index=range(len(ndata['doy'])),)
DF_10min['doy']=np.array(list(itertools.chain.from_iterable(ndata['doy'])),dtype=float)
DF_10min['cloudcode']=np.array(list(itertools.chain.from_iterable(ndata['cloudcode'])),dtype=float)
DF_10min['vert_vis']=np.array(list(itertools.chain.from_iterable(ndata['vert_vis'])),dtype=float)
DF_10min['high_sig']=np.array(list(itertools.chain.from_iterable(ndata['high_sig'])),dtype=float)
#2D cloudlayer
DF_10min_cloudbh=pd.DataFrame(index=range(len(ndata['doy'])),data=np.array(ndata['base_ht'],dtype=float))
#2D sc_layer_ht
DF_10min_scht=pd.DataFrame(index=range(len(ndata['doy'])),data=np.array(ndata['sc_ht'],dtype=float))
#2D sc_layer_frac
DF_10min_scfrac=pd.DataFrame(index=range(len(ndata['doy'])),data=np.array(ndata['sc_frac'],dtype=float))
#2D ranges
DF_10min_range=pd.DataFrame(index=range(len(ndata['doy'])),data=np.array(ndata['bs_prof'],dtype=float))
# -
len(DF_10min)
#check for NaNs - no nans in 10min avg data
selection = DF_10min.iloc[DF_10min[~DF_10min.doy.isna()].index].index.values # size with no nans
idx_nan = DF_10min.iloc[DF_10min[DF_10min.doy.isna()].index].index.values # length of nan times
print(len(selection),len(idx_nan))
#select only no-nan times; for all 5 pandas dataframes
DF_10min=DF_10min.iloc[selection].reset_index(drop=True)
DF_10min_cloudbh=DF_10min_cloudbh.iloc[selection].reset_index(drop=True)
DF_10min_scht=DF_10min_scht.iloc[selection].reset_index(drop=True)
DF_10min_scfrac=DF_10min_scfrac.iloc[selection].reset_index(drop=True)
DF_10min_range=DF_10min_range.iloc[selection].reset_index(drop=True)
#check for right length (same as in the beginning)
print(len(DF_10min),len(DF_10min_cloudbh),len(DF_10min_scfrac),len(DF_10min_scht),len(DF_10min_range))
DF_10min.iloc[DF_10min[DF_10min.doy.isna()].index] #check again for NaNs - empty!
# set time dimension
Time_steps=returndatetime_fromdoy(np.array(DF_10min.doy.values,dtype=float))
Times_nomicrosec=[pd.to_datetime(T).round('1s') for T in Time_steps]
Time_steps_dt64_org=[np.datetime64(t) for t in Time_steps]
Time_steps_dt64_org=np.array(Time_steps_dt64_org,dtype='datetime64[ns]')
# add date values
DF_10min['year']=np.array([Times_nomicrosec[i].year for i in range(len(Time_steps))],dtype=int)
DF_10min['month']=np.array([Times_nomicrosec[i].month for i in range(len(Time_steps))],dtype=int)
DF_10min['day']=np.array([Times_nomicrosec[i].day for i in range(len(Time_steps))],dtype=int)
DF_10min['hour']=np.array([Times_nomicrosec[i].hour for i in range(len(Time_steps))],dtype=int)
DF_10min['minute']=np.array([Times_nomicrosec[i].minute for i in range(len(Time_steps))],dtype=int)
DF_10min['second']=np.array([Times_nomicrosec[i].second for i in range(len(Time_steps))],dtype=int)
# +
# create xr DataArrays
#1D: dimension time
da_doy=xr.DataArray(data=np.array(DF_10min['doy']).astype('float32'),name="day_of_year",
dims=["time"],coords=dict(time=Time_steps_dt64_org),
attrs=dict(type="float32",dimension="time",units="1",long_name="Day of Year",
description="time as decimal day of year"),) #added as 1D
#date and time in separate arrays; microseconds approximated to seconds
da_year=xr.DataArray(data=np.array(DF_10min['year']).astype('int32'),name="year",dims=["time"],
coords=dict(time=Time_steps_dt64_org),
attrs=dict(type="int32",dimension="time",units="1",long_name="Year"),) #added as 1D
da_month=xr.DataArray(data=np.array(DF_10min['month']).astype('int32'),name="month",dims=["time"],
coords=dict(time=Time_steps_dt64_org),
attrs=dict(type="int32",dimension="time",units="1", long_name="Month"),) #added as 1D
da_day=xr.DataArray(data=np.array(DF_10min['day']).astype('int32'),name="day",dims=["time"],
coords=dict(time=Time_steps_dt64_org),
attrs=dict(type="int32",dimension="time",units="1",long_name="Day"),) #added as 1D
da_hour=xr.DataArray(data=np.array(DF_10min['hour']).astype('int32'),name="hour",dims=["time"],
coords=dict(time=Time_steps_dt64_org),
attrs=dict(type="int32",dimension="time",units="1",long_name="Hour"),) #added as 1D
da_min=xr.DataArray(data=np.array(DF_10min['minute']).astype('int32'),name="minute",dims=["time"],
coords=dict(time=Time_steps_dt64_org),
attrs=dict(type="int32",dimension="time",units="1",long_name="Minute"),) #added as 1D
da_sec=xr.DataArray(data=np.array(DF_10min['second']).astype('int32'),name="second",dims=["time"],
coords=dict(time=Time_steps_dt64_org),
attrs=dict(type="int32",dimension="time",units="1",long_name="Second",
description="Time averaged to closest second"),) #added as 1D
#add cloudcode flag
da_cloudcode=xr.DataArray(data=np.array(DF_10min['cloudcode']).astype('int32'),name="flag_cloudcode",dims=["time"],
coords=dict(time=Time_steps_dt64_org),
attrs=dict(type="int32",dimension="time",units="1",
long_name='Data flag: Cloudcode',
flag_values="-1,0,1,2,3,4",
flag_meanings="missing_data\nno_significant_backscatter\none_cloud_base_detected\ntwo_cloud_bases_detected\nthree_cloud_bases_detected\nfull_obscuration",
description="Code for number of cloud bases detected; see Readme document for more information"),)
da_vertvis=xr.DataArray(data=np.array(DF_10min['vert_vis']).astype('float32'),
name="vertical_visibility",dims=["time"],coords=dict(time=Time_steps_dt64_org),
attrs=dict(type="float32",dimension="time", units="m",
long_name="Vertical Visibilility",
description="Vertical visibility given in case of obscured cloud base (at flag_cloudcode 4), else NaN"),) #added as 1D
da_high_sig=xr.DataArray(data=np.array(DF_10min['high_sig']).astype('float32'),
name="highest_detected_signal",dims=["time"],coords=dict(time=Time_steps_dt64_org),
attrs=dict(type="float32",dimension="time", units="m",
long_name="Highest Signal Detected",
description="Highest signal detected given in case of obscured cloud base (at flag_cloudcode 4), else NaN"),) #added as 1D
#1D: dimension range_levels
da_ceilrange=xr.DataArray(data=np.array(list(itertools.chain.from_iterable(ndata['ceil_range'])),dtype=int).astype('int32'),
name="ceilometer_range",dims=["range_levels"],coords=dict(range_levels=range_levs),
attrs=dict(type="int32",dimension="range_levels",units="m",
long_name="Ceilometer Range",
description="Ranges for the ceilometer backscatter profile, including the instrument height",),) #added as 1D
#2D: dimension time/cloud_layer
da_baseht=xr.DataArray(data=np.array(DF_10min_cloudbh,dtype=float).astype('float32'),
name="cloud_base_altitude",dims=["time","cloud_layer"],
coords=dict(time=Time_steps_dt64_org,cloud_layer=cloud_layer_levs),
attrs=dict(type="float32",dimension="time, cloud_layer", units="m",
long_name="Cloud Base Altitude",
description="cloud base height of 1-3 cloud layers; NaN if no layer detected. " +\
"Instrument height incorporated."),) #added as 2D
#2D: dimension time/sky_condition_layer
da_scfrac=xr.DataArray(data=np.array(DF_10min_scfrac,dtype=float).astype('float32'),
name="sky_condition_cloud_fraction",dims=["time","sky_condition_layer"],
coords=dict(time=Time_steps_dt64_org,sky_condition_layer=sc_layer_levs),
attrs=dict(type="float32",dimension="time, sky_condition_layer", units="octal",
long_name="Sky Condition Cloud Fraction",
description="Cloud fraction calculated with the sky condition algorithm. "+\
"0-8 = cloud coverage of up to 5 levels; 9 = obscuration. " +\
"NaN = missing data or no detected layer."),) #added as 2D
da_scht=xr.DataArray(data=np.array(DF_10min_scht,dtype=float).astype('float32'),
name="sky_condition_cloud_altitude",dims=["time","sky_condition_layer"],
coords=dict(time=Time_steps_dt64_org,sky_condition_layer=sc_layer_levs),
attrs=dict(type="float32",dimension="time, sky_condition_layer", units="m",
long_name="Sky Condition Cloud Altitude layer height",
description = "Cloud layer height calculated with the sky condition algorithm. "+\
"Cloud layer height given for 1-5 sky condition layers; NaN if no layer detected. "+\
"Vertical visibility is reported as height if obscuration (at sky_condition_cloud_fraction 9). "+\
"Instrument height incorporated."),) #added as 2D
#2D: dimension time/range
da_bsprof=xr.DataArray(data=np.array(DF_10min_range,dtype=float).astype('float32'),
name="backscatter_profile",dims=["time","range_levels"],
coords=dict(time=Time_steps_dt64_org,range_levels=range_levs),
attrs=dict(type="float32",dimension="time, range_levels", units="1 km-1 steradians-1",
long_name="Backscatter Profile", description="backscatter coefficient profile"),) #added as 2D
# +
#merge all arrays into one
ds_all=xr.merge([da_doy,da_year,da_month,da_day,da_hour,da_min,da_sec,
da_ceilrange,da_cloudcode,da_vertvis,da_high_sig,
da_baseht,da_scfrac,da_scht,da_bsprof])
len(ds_all)
# -
#get time range - start
Times_nomicrosec[0]
#get time range - end
Times_nomicrosec[-1]
# +
# modify attributes (start/end time and text in comments);
# note again geospatial bounds from the weather station data
ds_all.attrs = {"Conventions" :"CF-1.8",
"source" : "Ceilometer",
"instrument_model" : "Vaisala Ceilometer CL31",
"creator_name" : "Sonja Murto",
"creator_email" : "sonja.murto@misu.su.se",
"creator_url" : "https://orcid.org/0000-0002-4966-9077",
"institution" : "Stockholm University",
"processing_software" : "Matlab (for creating the matlab file) and a jupyter notebook script (netCDF)",
"sampling_interval": "original 30s; here 10min averages",
"product_version" : "v01",
"last_revised_date" : "2024-05-31T15:00:00",
"project" : "ARTofMELT",
"project_principal_investigator" : "Michael Tjernström",
"project_principal_investigator_email" : "michaelt@misu.su.se",
"project_principal_investigator_url" : "https://orcid.org/0000-0002-6908-7410",
"acknowledgement" : " Knut och Alice Wallenbergs Stiftelse, Grant 2016-0024",
"platform" : "Swedish Icebreaker Oden",
"platform_type" : "On Oden's 7th deck above the bridge",
"deployment_mode" : "ship",
"title" : "Ceilometer cloud base height, vertical visibility and backscatter profiles",
"feature_type" : "time series",
"time_coverage_start" : "2023-05-07T00:05:22",
"time_coverage_end" : "2023-06-13T16:15:07",
"geospatial_bounds" : "80.52392166666667N, -3.8737749999999997E, 78.04355166666666N, 15.660881666666667E",
"platform_altitude" : "Located at approximately 25 m a.s.l",
"location_keywords": "Oden, Arctic Ocean, Fram Strait, atmosphere, on the ship",
"comments" : "This file consists of 10 min averages of ceilometer data " +\
"measured with the Vaisala Ceilometer CL31 that was located on the 7th deck, "+\
"above the bridge (at approximately 25m)." + \
"The sky condition measurements are time averages to represent an area average. " + \
"The vertical resolution is 10m * 770, but the measurement height (25m) is included in the backscatter profile ranges, " + \
"as well as in the cloud base heights (cloud_base_altitude and sky_condition_cloud_altitude). " + \
"Geospatial bounds are taken from the gps location of the weather station dataset located on Oden. " +\
"Time variables month, day, hour, minute and second are approximated to the nearest second. " +\
"Data produced by Sonja Murto. See the document - Readme_CL.txt - for more details."}
# -
ds_all
#save to netCDF
ds_all.to_netcdf(load_data + 'CL31_ceilometer_ARTofMELT_20230507_20230613_10min_v01.nc')
# +
#test plot
ds_all.sel(cloud_layer=1).cloud_base_altitude.plot(color='r',label='cloud_layer = 1')
ds_all.sel(cloud_layer=2).cloud_base_altitude.plot(color='b',label='cloud_layer = 2')
ds_all.sel(cloud_layer=3).cloud_base_altitude.plot(color='y',label='cloud_layer = 3')
plt.title('')
plt.legend()
plt.show()
# -
# ## Create netCDF from 20 min average files - remove times with no data points
CL_SM_avg = scipy.io.loadmat(load_data + 'CL31_ceilometer_ARTofMELT_20230507_20230613_20min_v01.mat',struct_as_record=True)
CL_SM_avg.keys()
# get the data in the mat file
Names=CL_SM_avg['cl31_av'].dtype.names
ndata = {n: CL_SM_avg['cl31_av'][n][0, 0] for n in Names}
print(Names)
# +
# create pandas dataframe from the data
# 1D variables
DF_20min=pd.DataFrame(index=range(len(ndata['doy'])),)
DF_20min['doy']=np.array(list(itertools.chain.from_iterable(ndata['doy'])),dtype=float)
DF_20min['cloudcode']=np.array(list(itertools.chain.from_iterable(ndata['cloudcode'])),dtype=float)
DF_20min['vert_vis']=np.array(list(itertools.chain.from_iterable(ndata['vert_vis'])),dtype=float)
DF_20min['high_sig']=np.array(list(itertools.chain.from_iterable(ndata['high_sig'])),dtype=float)
#2D cloudlayer
DF_20min_cloudbh=pd.DataFrame(index=range(len(ndata['doy'])),data=np.array(ndata['base_ht'],dtype=float))
#2D sc_layer_ht
DF_20min_scht=pd.DataFrame(index=range(len(ndata['doy'])),data=np.array(ndata['sc_ht'],dtype=float))
#2D sc_layer_frac
DF_20min_scfrac=pd.DataFrame(index=range(len(ndata['doy'])),data=np.array(ndata['sc_frac'],dtype=float))
#2D ranges
DF_20min_range=pd.DataFrame(index=range(len(ndata['doy'])),data=np.array(ndata['bs_prof'],dtype=float))
# -
len(DF_20min)
#check for NaNs - no nans in 20min avg data
selection = DF_20min.iloc[DF_20min[~DF_20min.doy.isna()].index].index.values # size with no nans
idx_nan = DF_20min.iloc[DF_20min[DF_20min.doy.isna()].index].index.values # length of nan times
print(len(selection),len(idx_nan))
#select only no-nan times; for all 5 pandas dataframes
DF_20min=DF_20min.iloc[selection].reset_index(drop=True)
DF_20min_cloudbh=DF_20min_cloudbh.iloc[selection].reset_index(drop=True)
DF_20min_scht=DF_20min_scht.iloc[selection].reset_index(drop=True)
DF_20min_scfrac=DF_20min_scfrac.iloc[selection].reset_index(drop=True)
DF_20min_range=DF_20min_range.iloc[selection].reset_index(drop=True)
#check for right length (same as in the beginning)
print(len(DF_20min),len(DF_20min_cloudbh),len(DF_20min_scfrac),len(DF_20min_scht),len(DF_20min_range))
DF_20min.iloc[DF_20min[DF_20min.doy.isna()].index] #check again for NaNs - empty!
# set time dimension
Time_steps=returndatetime_fromdoy(np.array(DF_20min.doy.values,dtype=float))
Times_nomicrosec=[pd.to_datetime(T).round('1s') for T in Time_steps]
Time_steps_dt64_org=[np.datetime64(t) for t in Time_steps]
Time_steps_dt64_org=np.array(Time_steps_dt64_org,dtype='datetime64[ns]')
# add date values
DF_20min['year']=np.array([Times_nomicrosec[i].year for i in range(len(Time_steps))],dtype=int)
DF_20min['month']=np.array([Times_nomicrosec[i].month for i in range(len(Time_steps))],dtype=int)
DF_20min['day']=np.array([Times_nomicrosec[i].day for i in range(len(Time_steps))],dtype=int)
DF_20min['hour']=np.array([Times_nomicrosec[i].hour for i in range(len(Time_steps))],dtype=int)
DF_20min['minute']=np.array([Times_nomicrosec[i].minute for i in range(len(Time_steps))],dtype=int)
DF_20min['second']=np.array([Times_nomicrosec[i].second for i in range(len(Time_steps))],dtype=int)
# +
# create xr DataArrays
#1D: dimension time
da_doy=xr.DataArray(data=np.array(DF_20min['doy']).astype('float32'),name="day_of_year",
dims=["time"],coords=dict(time=Time_steps_dt64_org),
attrs=dict(type="float32",dimension="time",units="1",long_name="Day of Year",
description="time as decimal day of year"),) #added as 1D
#date and time in separate arrays; microseconds approximated to seconds
da_year=xr.DataArray(data=np.array(DF_20min['year']).astype('int32'),name="year",dims=["time"],
coords=dict(time=Time_steps_dt64_org),
attrs=dict(type="int32",dimension="time",units="1",long_name="Year"),) #added as 1D
da_month=xr.DataArray(data=np.array(DF_20min['month']).astype('int32'),name="month",dims=["time"],
coords=dict(time=Time_steps_dt64_org),
attrs=dict(type="int32",dimension="time",units="1", long_name="Month"),) #added as 1D
da_day=xr.DataArray(data=np.array(DF_20min['day']).astype('int32'),name="day",dims=["time"],
coords=dict(time=Time_steps_dt64_org),
attrs=dict(type="int32",dimension="time",units="1",long_name="Day"),) #added as 1D
da_hour=xr.DataArray(data=np.array(DF_20min['hour']).astype('int32'),name="hour",dims=["time"],
coords=dict(time=Time_steps_dt64_org),
attrs=dict(type="int32",dimension="time",units="1",long_name="Hour"),) #added as 1D
da_min=xr.DataArray(data=np.array(DF_20min['minute']).astype('int32'),name="minute",dims=["time"],
coords=dict(time=Time_steps_dt64_org),
attrs=dict(type="int32",dimension="time",units="1",long_name="Minute"),) #added as 1D
da_sec=xr.DataArray(data=np.array(DF_20min['second']).astype('int32'),name="second",dims=["time"],
coords=dict(time=Time_steps_dt64_org),
attrs=dict(type="int32",dimension="time",units="1",long_name="Second",
description="Time averaged to closest second"),) #added as 1D
#add cloudcode flag
da_cloudcode=xr.DataArray(data=np.array(DF_20min['cloudcode']).astype('int32'),name="flag_cloudcode",dims=["time"],
coords=dict(time=Time_steps_dt64_org),
attrs=dict(type="int32",dimension="time",units="1",
long_name='Data flag: Cloudcode',
flag_values="-1,0,1,2,3,4",
flag_meanings="missing_data\nno_significant_backscatter\none_cloud_base_detected\ntwo_cloud_bases_detected\nthree_cloud_bases_detected\nfull_obscuration",
description="Code for number of cloud bases detected; see Readme document for more information"),)
da_vertvis=xr.DataArray(data=np.array(DF_20min['vert_vis']).astype('float32'),
name="vertical_visibility",dims=["time"],coords=dict(time=Time_steps_dt64_org),
attrs=dict(type="float32",dimension="time", units="m",
long_name="Vertical Visibilility",
description="Vertical visibility given in case of obscured cloud base (at flag_cloudcode 4), else NaN"),) #added as 1D
da_high_sig=xr.DataArray(data=np.array(DF_20min['high_sig']).astype('float32'),
name="highest_detected_signal",dims=["time"],coords=dict(time=Time_steps_dt64_org),
attrs=dict(type="float32",dimension="time", units="m",
long_name="Highest Signal Detected",
description="Highest signal detected given in case of obscured cloud base (at flag_cloudcode 4), else NaN"),) #added as 1D
#1D: dimension range_levels
da_ceilrange=xr.DataArray(data=np.array(list(itertools.chain.from_iterable(ndata['ceil_range'])),dtype=int).astype('int32'),
name="ceilometer_range",dims=["range_levels"],coords=dict(range_levels=range_levs),
attrs=dict(type="int32",dimension="range_levels",units="m",