Newer
Older
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
"\n",
".xr-var-preview {\n",
" grid-column: 4;\n",
"}\n",
"\n",
".xr-var-name,\n",
".xr-var-dims,\n",
".xr-var-dtype,\n",
".xr-preview,\n",
".xr-attrs dt {\n",
" white-space: nowrap;\n",
" overflow: hidden;\n",
" text-overflow: ellipsis;\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-var-name:hover,\n",
".xr-var-dims:hover,\n",
".xr-var-dtype:hover,\n",
".xr-attrs dt:hover {\n",
" overflow: visible;\n",
" width: auto;\n",
" z-index: 1;\n",
"}\n",
"\n",
".xr-var-attrs,\n",
".xr-var-data {\n",
" display: none;\n",
" background-color: var(--xr-background-color) !important;\n",
" padding-bottom: 5px !important;\n",
"}\n",
"\n",
".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
".xr-var-data-in:checked ~ .xr-var-data {\n",
" display: block;\n",
"}\n",
"\n",
".xr-var-data > table {\n",
" float: right;\n",
"}\n",
"\n",
".xr-var-name span,\n",
".xr-var-data,\n",
".xr-attrs {\n",
" padding-left: 25px !important;\n",
"}\n",
"\n",
".xr-attrs,\n",
".xr-var-attrs,\n",
".xr-var-data {\n",
" grid-column: 1 / -1;\n",
"}\n",
"\n",
"dl.xr-attrs {\n",
" padding: 0;\n",
" margin: 0;\n",
" display: grid;\n",
" grid-template-columns: 125px auto;\n",
"}\n",
"\n",
".xr-attrs dt,\n",
".xr-attrs dd {\n",
" padding: 0;\n",
" margin: 0;\n",
" float: left;\n",
" padding-right: 10px;\n",
" width: auto;\n",
"}\n",
"\n",
".xr-attrs dt {\n",
" font-weight: normal;\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-attrs dt:hover span {\n",
" display: inline-block;\n",
" background: var(--xr-background-color);\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-attrs dd {\n",
" grid-column: 2;\n",
" white-space: pre-wrap;\n",
" word-break: break-all;\n",
"}\n",
"\n",
".xr-icon-database,\n",
".xr-icon-file-text2 {\n",
" display: inline-block;\n",
" vertical-align: middle;\n",
" width: 1em;\n",
" height: 1.5em !important;\n",
" stroke-width: 0;\n",
" stroke: currentColor;\n",
" fill: currentColor;\n",
"}\n",
"</style><pre class='xr-text-repr-fallback'><xarray.Dataset>\n",
"Dimensions: (cloud_layer: 3, range_levels: 770, sky_condition_layer: 5, time: 54251)\n",
"Coordinates:\n",
" * time (time) datetime64[ns] 2023-05-07T00:00:52.2...\n",
" * range_levels (range_levels) int32 1 2 3 4 ... 768 769 770\n",
" * cloud_layer (cloud_layer) int32 1 2 3\n",
" * sky_condition_layer (sky_condition_layer) int32 1 2 3 4 5\n",
"Data variables: (12/15)\n",
" day_of_year (time) float32 127.0 127.0 ... 164.7 164.7\n",
" year (time) int32 2023 2023 2023 ... 2023 2023 2023\n",
" month (time) int32 5 5 5 5 5 5 5 5 ... 6 6 6 6 6 6 6\n",
" day (time) int32 7 7 7 7 7 7 ... 13 13 13 13 13 13\n",
" hour (time) int32 0 0 0 0 0 0 ... 16 16 16 16 16 16\n",
" minute (time) int32 0 2 3 4 5 6 ... 18 19 20 21 22 23\n",
" ... ...\n",
" vertical_visibility (time) float32 nan nan nan nan ... nan nan nan\n",
" highest_detected_signal (time) float32 nan nan nan nan ... nan nan nan\n",
" cloud_base_altitude (time, cloud_layer) float32 808.3 ... nan\n",
" sky_condition_cloud_fraction (time, sky_condition_layer) float32 6.0 ......\n",
" sky_condition_cloud_altitude (time, sky_condition_layer) float32 775.0 ....\n",
" backscatter_profile (time, range_levels) float32 0.0003533 ... ...\n",
"Attributes: (12/27)\n",
" Conventions: CF-1.8\n",
" source: Ceilometer\n",
" instrument_model: Vaisala Ceilometer CL31\n",
" creator_name: Sonja Murto\n",
" creator_email: sonja.murto@misu.su.se\n",
" creator_url: https://orcid.org/0000-0002-4966-9077\n",
" ... ...\n",
" time_coverage_start: 2023-05-07T00:00:52\n",
" time_coverage_end: 2023-06-13T16:23:37\n",
" geospatial_bounds: 80.52392166666667N, -3.87377499999...\n",
" platform_altitude: Located at approximately 25 m a.s.l\n",
" location_keywords: Oden, Arctic Ocean, Fram Strait, a...\n",
" comments: This file consists of 1 min averag...</pre><div class='xr-wrap' hidden><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-c8a8ecf0-c432-410d-8670-7ba62f030f36' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-c8a8ecf0-c432-410d-8670-7ba62f030f36' class='xr-section-summary' title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span class='xr-has-index'>cloud_layer</span>: 3</li><li><span class='xr-has-index'>range_levels</span>: 770</li><li><span class='xr-has-index'>sky_condition_layer</span>: 5</li><li><span class='xr-has-index'>time</span>: 54251</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-29b2e0c2-9c68-4874-a914-4c4cafa83672' class='xr-section-summary-in' type='checkbox' checked><label for='section-29b2e0c2-9c68-4874-a914-4c4cafa83672' class='xr-section-summary' >Coordinates: <span>(4)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>time</span></div><div class='xr-var-dims'>(time)</div><div class='xr-var-dtype'>datetime64[ns]</div><div class='xr-var-preview xr-preview'>2023-05-07T00:00:52.265334 ... 2...</div><input id='attrs-5821690b-40af-4d89-b65f-6bf8c1d70ec1' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-5821690b-40af-4d89-b65f-6bf8c1d70ec1' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-db5f3a96-512f-41e4-bc56-246e78e768ab' class='xr-var-data-in' type='checkbox'><label for='data-db5f3a96-512f-41e4-bc56-246e78e768ab' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array(['2023-05-07T00:00:52.265334000', '2023-05-07T00:02:07.263497000',\n",
" '2023-05-07T00:03:07.263001000', ..., '2023-06-13T16:21:37.297999000',\n",
" '2023-06-13T16:22:37.297000000', '2023-06-13T16:23:37.296001000'],\n",
" dtype='datetime64[ns]')</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>range_levels</span></div><div class='xr-var-dims'>(range_levels)</div><div class='xr-var-dtype'>int32</div><div class='xr-var-preview xr-preview'>1 2 3 4 5 6 ... 766 767 768 769 770</div><input id='attrs-5348be17-6a5e-43a5-86d2-4c43befeb566' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-5348be17-6a5e-43a5-86d2-4c43befeb566' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-54136a38-e88e-4ed6-9de8-b740986bae82' class='xr-var-data-in' type='checkbox'><label for='data-54136a38-e88e-4ed6-9de8-b740986bae82' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([ 1, 2, 3, ..., 768, 769, 770], dtype=int32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>cloud_layer</span></div><div class='xr-var-dims'>(cloud_layer)</div><div class='xr-var-dtype'>int32</div><div class='xr-var-preview xr-preview'>1 2 3</div><input id='attrs-063be0c7-bba9-4140-9ddf-bc4098d2b188' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-063be0c7-bba9-4140-9ddf-bc4098d2b188' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-a535b096-5490-418b-8ba0-ff7246dcbfff' class='xr-var-data-in' type='checkbox'><label for='data-a535b096-5490-418b-8ba0-ff7246dcbfff' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([1, 2, 3], dtype=int32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>sky_condition_layer</span></div><div class='xr-var-dims'>(sky_condition_layer)</div><div class='xr-var-dtype'>int32</div><div class='xr-var-preview xr-preview'>1 2 3 4 5</div><input id='attrs-1bd83c73-d317-42c3-a0e4-acc76acad1f6' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-1bd83c73-d317-42c3-a0e4-acc76acad1f6' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-fd5a2d91-26a2-4598-8f69-b57690996ad8' class='xr-var-data-in' type='checkbox'><label for='data-fd5a2d91-26a2-4598-8f69-b57690996ad8' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([1, 2, 3, 4, 5], dtype=int32)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-33b4e616-0d1e-4190-a9ff-f05f5d1e3ef7' class='xr-section-summary-in' type='checkbox' ><label for='section-33b4e616-0d1e-4190-a9ff-f05f5d1e3ef7' class='xr-section-summary' >Data variables: <span>(15)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>day_of_year</span></div><div class='xr-var-dims'>(time)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>127.0 127.0 127.0 ... 164.7 164.7</div><input id='attrs-6c572098-9585-4785-b9ea-25e7c49f4521' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-6c572098-9585-4785-b9ea-25e7c49f4521' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-d8a34d23-038b-4d6e-add0-d156a487e737' class='xr-var-data-in' type='checkbox'><label for='data-d8a34d23-038b-4d6e-add0-d156a487e737' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>type :</span></dt><dd>float32</dd><dt><span>dimension :</span></dt><dd>time</dd><dt><span>units :</span></dt><dd>1</dd><dt><span>long_name :</span></dt><dd>Day of Year</dd><dt><span>description :</span></dt><dd>time as decimal day of year</dd></dl></div><div class='xr-var-data'><pre>array([127.0006 , 127.00147, 127.00217, ..., 164.68169, 164.68237,\n",
" 164.68307], dtype=float32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>year</span></div><div class='xr-var-dims'>(time)</div><div class='xr-var-dtype'>int32</div><div class='xr-var-preview xr-preview'>2023 2023 2023 ... 2023 2023 2023</div><input id='attrs-c8065166-6a3b-42de-8b91-227930bdad37' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-c8065166-6a3b-42de-8b91-227930bdad37' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-e52b4347-7c86-440a-96aa-dc7967cf7530' class='xr-var-data-in' type='checkbox'><label for='data-e52b4347-7c86-440a-96aa-dc7967cf7530' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>type :</span></dt><dd>int32</dd><dt><span>dimension :</span></dt><dd>time</dd><dt><span>units :</span></dt><dd>1</dd><dt><span>long_name :</span></dt><dd>Year</dd></dl></div><div class='xr-var-data'><pre>array([2023, 2023, 2023, ..., 2023, 2023, 2023], dtype=int32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>month</span></div><div class='xr-var-dims'>(time)</div><div class='xr-var-dtype'>int32</div><div class='xr-var-preview xr-preview'>5 5 5 5 5 5 5 5 ... 6 6 6 6 6 6 6 6</div><input id='attrs-201157e7-3a5d-41d6-bad3-2858c587806d' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-201157e7-3a5d-41d6-bad3-2858c587806d' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-49cc089d-5779-4c38-9041-09f3a228cef2' class='xr-var-data-in' type='checkbox'><label for='data-49cc089d-5779-4c38-9041-09f3a228cef2' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>type :</span></dt><dd>int32</dd><dt><span>dimension :</span></dt><dd>time</dd><dt><span>units :</span></dt><dd>1</dd><dt><span>long_name :</span></dt><dd>Month</dd></dl></div><div class='xr-var-data'><pre>array([5, 5, 5, ..., 6, 6, 6], dtype=int32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>day</span></div><div class='xr-var-dims'>(time)</div><div class='xr-var-dtype'>int32</div><div class='xr-var-preview xr-preview'>7 7 7 7 7 7 7 ... 13 13 13 13 13 13</div><input id='attrs-5999efe8-c639-4df4-8efe-a54f46601a30' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-5999efe8-c639-4df4-8efe-a54f46601a30' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-314ae8e3-0040-4e47-8264-cab168b2cf8d' class='xr-var-data-in' type='checkbox'><label for='data-314ae8e3-0040-4e47-8264-cab168b2cf8d' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>type :</span></dt><dd>int32</dd><dt><span>dimension :</span></dt><dd>time</dd><dt><span>units :</span></dt><dd>1</dd><dt><span>long_name :</span></dt><dd>Day</dd></dl></div><div class='xr-var-data'><pre>array([ 7, 7, 7, ..., 13, 13, 13], dtype=int32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>hour</span></div><div class='xr-var-dims'>(time)</div><div class='xr-var-dtype'>int32</div><div class='xr-var-preview xr-preview'>0 0 0 0 0 0 0 ... 16 16 16 16 16 16</div><input id='attrs-ba90909f-954b-40a9-bb1e-ebd936e72944' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-ba90909f-954b-40a9-bb1e-ebd936e72944' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-50f7c962-b796-4f5d-8392-90399ce54909' class='xr-var-data-in' type='checkbox'><label for='data-50f7c962-b796-4f5d-8392-90399ce54909' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>type :</span></dt><dd>int32</dd><dt><span>dimension :</span></dt><dd>time</dd><dt><span>units :</span></dt><dd>1</dd><dt><span>long_name :</span></dt><dd>Hour</dd></dl></div><div class='xr-var-data'><pre>array([ 0, 0, 0, ..., 16, 16, 16], dtype=int32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>minute</span></div><div class='xr-var-dims'>(time)</div><div class='xr-var-dtype'>int32</div><div class='xr-var-preview xr-preview'>0 2 3 4 5 6 7 ... 18 19 20 21 22 23</div><input id='attrs-b8b05877-fcc9-4485-9be1-9135c6fab5e5' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-b8b05877-fcc9-4485-9be1-9135c6fab5e5' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-5cb8b9d3-da66-44bf-a059-559177e7b4ed' class='xr-var-data-in' type='checkbox'><label for='data-5cb8b9d3-da66-44bf-a059-559177e7b4ed' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>type :</span></dt><dd>int32</dd><dt><span>dimension :</span></dt><dd>time</dd><dt><span>units :</span></dt><dd>1</dd><dt><span>long_name :</span></dt><dd>Minute</dd></dl></div><div class='xr-var-data'><pre>array([ 0, 2, 3, ..., 21, 22, 23], dtype=int32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>second</span></div><div class='xr-var-dims'>(time)</div><div class='xr-var-dtype'>int32</div><div class='xr-var-preview xr-preview'>52 7 7 7 7 7 ... 37 37 37 37 37 37</div><input id='attrs-658ac113-7b42-40c7-86e3-a11f99c5eeb9' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-658ac113-7b42-40c7-86e3-a11f99c5eeb9' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-c8b7c085-d532-49a6-8e1e-350c954b3db1' class='xr-var-data-in' type='checkbox'><label for='data-c8b7c085-d532-49a6-8e1e-350c954b3db1' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>type :</span></dt><dd>int32</dd><dt><span>dimension :</span></dt><dd>time</dd><dt><span>units :</span></dt><dd>1</dd><dt><span>long_name :</span></dt><dd>Second</dd><dt><span>description :</span></dt><dd>Time averaged to closest second</dd></dl></div><div class='xr-var-data'><pre>array([52, 7, 7, ..., 37, 37, 37], dtype=int32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>ceilometer_range</span></div><div class='xr-var-dims'>(range_levels)</div><div class='xr-var-dtype'>int32</div><div class='xr-var-preview xr-preview'>35 45 55 65 ... 7695 7705 7715 7725</div><input id='attrs-1788d758-9ff5-4a0e-899a-09aa60f49126' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-1788d758-9ff5-4a0e-899a-09aa60f49126' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-af4cd13f-cdaf-4c3b-9a00-f7fff1473349' class='xr-var-data-in' type='checkbox'><label for='data-af4cd13f-cdaf-4c3b-9a00-f7fff1473349' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>type :</span></dt><dd>int32</dd><dt><span>dimension :</span></dt><dd>range_levels</dd><dt><span>units :</span></dt><dd>m</dd><dt><span>long_name :</span></dt><dd>Ceilometer Range</dd><dt><span>description :</span></dt><dd>Ranges for the ceilometer backscatter profile, including the instrument height</dd></dl></div><div class='xr-var-data'><pre>array([ 35, 45, 55, 65, 75, 85, 95, 105, 115, 125, 135,\n",
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
" 145, 155, 165, 175, 185, 195, 205, 215, 225, 235, 245,\n",
" 255, 265, 275, 285, 295, 305, 315, 325, 335, 345, 355,\n",
" 365, 375, 385, 395, 405, 415, 425, 435, 445, 455, 465,\n",
" 475, 485, 495, 505, 515, 525, 535, 545, 555, 565, 575,\n",
" 585, 595, 605, 615, 625, 635, 645, 655, 665, 675, 685,\n",
" 695, 705, 715, 725, 735, 745, 755, 765, 775, 785, 795,\n",
" 805, 815, 825, 835, 845, 855, 865, 875, 885, 895, 905,\n",
" 915, 925, 935, 945, 955, 965, 975, 985, 995, 1005, 1015,\n",
" 1025, 1035, 1045, 1055, 1065, 1075, 1085, 1095, 1105, 1115, 1125,\n",
" 1135, 1145, 1155, 1165, 1175, 1185, 1195, 1205, 1215, 1225, 1235,\n",
" 1245, 1255, 1265, 1275, 1285, 1295, 1305, 1315, 1325, 1335, 1345,\n",
" 1355, 1365, 1375, 1385, 1395, 1405, 1415, 1425, 1435, 1445, 1455,\n",
" 1465, 1475, 1485, 1495, 1505, 1515, 1525, 1535, 1545, 1555, 1565,\n",
" 1575, 1585, 1595, 1605, 1615, 1625, 1635, 1645, 1655, 1665, 1675,\n",
" 1685, 1695, 1705, 1715, 1725, 1735, 1745, 1755, 1765, 1775, 1785,\n",
" 1795, 1805, 1815, 1825, 1835, 1845, 1855, 1865, 1875, 1885, 1895,\n",
" 1905, 1915, 1925, 1935, 1945, 1955, 1965, 1975, 1985, 1995, 2005,\n",
" 2015, 2025, 2035, 2045, 2055, 2065, 2075, 2085, 2095, 2105, 2115,\n",
" 2125, 2135, 2145, 2155, 2165, 2175, 2185, 2195, 2205, 2215, 2225,\n",
"...\n",
" 5645, 5655, 5665, 5675, 5685, 5695, 5705, 5715, 5725, 5735, 5745,\n",
" 5755, 5765, 5775, 5785, 5795, 5805, 5815, 5825, 5835, 5845, 5855,\n",
" 5865, 5875, 5885, 5895, 5905, 5915, 5925, 5935, 5945, 5955, 5965,\n",
" 5975, 5985, 5995, 6005, 6015, 6025, 6035, 6045, 6055, 6065, 6075,\n",
" 6085, 6095, 6105, 6115, 6125, 6135, 6145, 6155, 6165, 6175, 6185,\n",
" 6195, 6205, 6215, 6225, 6235, 6245, 6255, 6265, 6275, 6285, 6295,\n",
" 6305, 6315, 6325, 6335, 6345, 6355, 6365, 6375, 6385, 6395, 6405,\n",
" 6415, 6425, 6435, 6445, 6455, 6465, 6475, 6485, 6495, 6505, 6515,\n",
" 6525, 6535, 6545, 6555, 6565, 6575, 6585, 6595, 6605, 6615, 6625,\n",
" 6635, 6645, 6655, 6665, 6675, 6685, 6695, 6705, 6715, 6725, 6735,\n",
" 6745, 6755, 6765, 6775, 6785, 6795, 6805, 6815, 6825, 6835, 6845,\n",
" 6855, 6865, 6875, 6885, 6895, 6905, 6915, 6925, 6935, 6945, 6955,\n",
" 6965, 6975, 6985, 6995, 7005, 7015, 7025, 7035, 7045, 7055, 7065,\n",
" 7075, 7085, 7095, 7105, 7115, 7125, 7135, 7145, 7155, 7165, 7175,\n",
" 7185, 7195, 7205, 7215, 7225, 7235, 7245, 7255, 7265, 7275, 7285,\n",
" 7295, 7305, 7315, 7325, 7335, 7345, 7355, 7365, 7375, 7385, 7395,\n",
" 7405, 7415, 7425, 7435, 7445, 7455, 7465, 7475, 7485, 7495, 7505,\n",
" 7515, 7525, 7535, 7545, 7555, 7565, 7575, 7585, 7595, 7605, 7615,\n",
" 7625, 7635, 7645, 7655, 7665, 7675, 7685, 7695, 7705, 7715, 7725],\n",
" dtype=int32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>flag_cloudcode</span></div><div class='xr-var-dims'>(time)</div><div class='xr-var-dtype'>int32</div><div class='xr-var-preview xr-preview'>1 1 1 1 1 1 1 1 ... 1 1 1 1 1 1 1 1</div><input id='attrs-6b982b75-f0e4-4137-b939-a37008adddce' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-6b982b75-f0e4-4137-b939-a37008adddce' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-10e2fe12-abc9-42a9-b30e-2f1c667a7c00' class='xr-var-data-in' type='checkbox'><label for='data-10e2fe12-abc9-42a9-b30e-2f1c667a7c00' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>type :</span></dt><dd>int32</dd><dt><span>dimension :</span></dt><dd>time</dd><dt><span>units :</span></dt><dd>1</dd><dt><span>long_name :</span></dt><dd>Data flag: Cloudcode</dd><dt><span>flag_values :</span></dt><dd>-1,0,1,2,3,4</dd><dt><span>flag_meanings :</span></dt><dd>missing_data\n",
"no_significant_backscatter\n",
"one_cloud_base_detected\n",
"two_cloud_bases_detected\n",
"three_cloud_bases_detected\n",
"full_obscuration</dd><dt><span>description :</span></dt><dd>Code for number of cloud bases detected; see Readme document for more information</dd></dl></div><div class='xr-var-data'><pre>array([1, 1, 1, ..., 1, 1, 1], dtype=int32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>vertical_visibility</span></div><div class='xr-var-dims'>(time)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>nan nan nan nan ... nan nan nan nan</div><input id='attrs-77baba13-4dc2-4941-9bec-0cbb49b17fcb' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-77baba13-4dc2-4941-9bec-0cbb49b17fcb' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-723b3125-6e36-4dd6-9679-8a89d8c6d282' class='xr-var-data-in' type='checkbox'><label for='data-723b3125-6e36-4dd6-9679-8a89d8c6d282' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>type :</span></dt><dd>float32</dd><dt><span>dimension :</span></dt><dd>time</dd><dt><span>units :</span></dt><dd>m</dd><dt><span>long_name :</span></dt><dd>Vertical Visibilility</dd><dt><span>description :</span></dt><dd>Vertical visibility given in case of obscured cloud base (at flag_cloudcode 4), else NaN</dd></dl></div><div class='xr-var-data'><pre>array([nan, nan, nan, ..., nan, nan, nan], dtype=float32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>highest_detected_signal</span></div><div class='xr-var-dims'>(time)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>nan nan nan nan ... nan nan nan nan</div><input id='attrs-8a64a908-defd-459e-9902-6fc78159a28c' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-8a64a908-defd-459e-9902-6fc78159a28c' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-eab9109d-70fa-4aeb-b507-2596e7761fe7' class='xr-var-data-in' type='checkbox'><label for='data-eab9109d-70fa-4aeb-b507-2596e7761fe7' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>type :</span></dt><dd>float32</dd><dt><span>dimension :</span></dt><dd>time</dd><dt><span>units :</span></dt><dd>m</dd><dt><span>long_name :</span></dt><dd>Highest Signal Detected</dd><dt><span>description :</span></dt><dd>Highest signal detected given in case of obscured cloud base (at flag_cloudcode 4), else NaN</dd></dl></div><div class='xr-var-data'><pre>array([nan, nan, nan, ..., nan, nan, nan], dtype=float32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>cloud_base_altitude</span></div><div class='xr-var-dims'>(time, cloud_layer)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>808.3 945.0 nan ... 325.0 nan nan</div><input id='attrs-0793c79e-8956-4aed-8a7a-f386e06cf3d8' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-0793c79e-8956-4aed-8a7a-f386e06cf3d8' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-089fc130-86f0-4e90-a862-99610fc9ddf8' class='xr-var-data-in' type='checkbox'><label for='data-089fc130-86f0-4e90-a862-99610fc9ddf8' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>type :</span></dt><dd>float32</dd><dt><span>dimension :</span></dt><dd>time, cloud_layer</dd><dt><span>units :</span></dt><dd>m</dd><dt><span>long_name :</span></dt><dd>Cloud Base Altitude</dd><dt><span>description :</span></dt><dd>cloud base height of 1-3 cloud layers; NaN if no layer detected. Instrument height incorporated.</dd></dl></div><div class='xr-var-data'><pre>array([[808.3333, 945. , nan],\n",
" [840. , 955. , nan],\n",
" [785. , nan, nan],\n",
" ...,\n",
" [335. , nan, nan],\n",
" [335. , nan, nan],\n",
" [325. , nan, nan]], dtype=float32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>sky_condition_cloud_fraction</span></div><div class='xr-var-dims'>(time, sky_condition_layer)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>6.0 8.0 0.0 0.0 ... 0.0 0.0 0.0 0.0</div><input id='attrs-85a07185-56a9-4374-9db6-2699ee77ebdc' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-85a07185-56a9-4374-9db6-2699ee77ebdc' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-10b24ee7-7fbc-479d-9995-d66ece53ce41' class='xr-var-data-in' type='checkbox'><label for='data-10b24ee7-7fbc-479d-9995-d66ece53ce41' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>type :</span></dt><dd>float32</dd><dt><span>dimension :</span></dt><dd>time, sky_condition_layer</dd><dt><span>units :</span></dt><dd>octal</dd><dt><span>long_name :</span></dt><dd>Sky Condition Cloud Fraction</dd><dt><span>description :</span></dt><dd>Cloud fraction calculated with the sky condition algorithm. 0-8 = cloud coverage of up to 5 levels; 9 = obscuration. NaN = missing data or no detected layer.</dd></dl></div><div class='xr-var-data'><pre>array([[6., 8., 0., 0., 0.],\n",
" [6., 8., 0., 0., 0.],\n",
" [6., 8., 0., 0., 0.],\n",
" ...,\n",
" [8., 0., 0., 0., 0.],\n",
" [8., 0., 0., 0., 0.],\n",
" [8., 0., 0., 0., 0.]], dtype=float32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>sky_condition_cloud_altitude</span></div><div class='xr-var-dims'>(time, sky_condition_layer)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>775.0 1.525e+03 nan ... nan nan nan</div><input id='attrs-6e2c5335-c7f7-4c53-9600-136b06a99963' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-6e2c5335-c7f7-4c53-9600-136b06a99963' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-aa4c4cda-54ea-419f-b5be-eb176dd35b05' class='xr-var-data-in' type='checkbox'><label for='data-aa4c4cda-54ea-419f-b5be-eb176dd35b05' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>type :</span></dt><dd>float32</dd><dt><span>dimension :</span></dt><dd>time, sky_condition_layer</dd><dt><span>units :</span></dt><dd>m</dd><dt><span>long_name :</span></dt><dd>Sky Condition Cloud Altitude</dd><dt><span>description :</span></dt><dd>Cloud layer height calculated with the sky condition algorithm. Cloud layer height given for 1-5 sky condition layers; NaN if no layer detected. Vertical visibility is reported as height if obscuration (at sky_condition_cloud_fraction 9). Instrument height incorporated.</dd></dl></div><div class='xr-var-data'><pre>array([[ 775., 1525., nan, nan, nan],\n",
" [ 775., 1525., nan, nan, nan],\n",
" [ 775., 1525., nan, nan, nan],\n",
" ...,\n",
" [ 365., nan, nan, nan, nan],\n",
" [ 365., nan, nan, nan, nan],\n",
" [ 365., nan, nan, nan, nan]], dtype=float32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>backscatter_profile</span></div><div class='xr-var-dims'>(time, range_levels)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>0.0003533 0.0002167 ... 0.00034</div><input id='attrs-b890216a-bfcc-4147-b89a-379da5816281' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-b890216a-bfcc-4147-b89a-379da5816281' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-ee495f38-4f41-4f38-8ada-1e4e538a77e8' class='xr-var-data-in' type='checkbox'><label for='data-ee495f38-4f41-4f38-8ada-1e4e538a77e8' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>type :</span></dt><dd>float32</dd><dt><span>dimension :</span></dt><dd>time, range_levels</dd><dt><span>units :</span></dt><dd>1 km-1 steradians-1</dd><dt><span>long_name :</span></dt><dd>Backscatter Profile</dd><dt><span>description :</span></dt><dd>backscatter coefficient profile</dd></dl></div><div class='xr-var-data'><pre>array([[ 0.00035333, 0.00021667, 0.00021333, ..., -0.00028667,\n",
" 0.00051 , 0.0013 ],\n",
" [ 0.00032 , 0.000225 , 0.00022 , ..., 0.00276 ,\n",
" -0.00058 , -0.001275 ],\n",
" [ 0.000185 , 0.00021 , 0.000215 , ..., -0.002565 ,\n",
" -0.000345 , 0.002385 ],\n",
" ...,\n",
" [ 0.001 , 0.00545 , 0.00755 , ..., -0.003415 ,\n",
" -0.000505 , -0.00029 ],\n",
" [ 0.01525 , 0.01285 , 0.01205 , ..., 0.002635 ,\n",
" 0.000335 , -0.000745 ],\n",
" [ 0.00908 , 0.00889 , 0.00935 , ..., 0.000155 ,\n",
" 0.00016 , 0.00034 ]], dtype=float32)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-bf794535-7968-4471-91eb-dac4358ed606' class='xr-section-summary-in' type='checkbox' ><label for='section-bf794535-7968-4471-91eb-dac4358ed606' class='xr-section-summary' >Attributes: <span>(27)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'><dt><span>Conventions :</span></dt><dd>CF-1.8</dd><dt><span>source :</span></dt><dd>Ceilometer</dd><dt><span>instrument_model :</span></dt><dd>Vaisala Ceilometer CL31</dd><dt><span>creator_name :</span></dt><dd>Sonja Murto</dd><dt><span>creator_email :</span></dt><dd>sonja.murto@misu.su.se</dd><dt><span>creator_url :</span></dt><dd>https://orcid.org/0000-0002-4966-9077</dd><dt><span>institution :</span></dt><dd>Stockholm University</dd><dt><span>processing_software :</span></dt><dd>Matlab (for creating the matlab file) and a jupyter notebook script (netCDF)</dd><dt><span>sampling_interval :</span></dt><dd>original 30s; here 1min averages</dd><dt><span>product_version :</span></dt><dd>v01</dd><dt><span>last_revised_date :</span></dt><dd>2024-05-31T15:00:00</dd><dt><span>project :</span></dt><dd>ARTofMELT</dd><dt><span>project_principal_investigator :</span></dt><dd>Michael Tjernström</dd><dt><span>project_principal_investigator_email :</span></dt><dd>michaelt@misu.su.se</dd><dt><span>project_principal_investigator_url :</span></dt><dd>https://orcid.org/0000-0002-6908-7410</dd><dt><span>acknowledgement :</span></dt><dd> Knut och Alice Wallenbergs Stiftelse, Grant 2016-0024</dd><dt><span>platform :</span></dt><dd>Swedish Icebreaker Oden</dd><dt><span>platform_type :</span></dt><dd>On Oden's 7th deck above the bridge</dd><dt><span>deployment_mode :</span></dt><dd>ship</dd><dt><span>title :</span></dt><dd>Ceilometer cloud base height, vertical visibility and backscatter profiles</dd><dt><span>feature_type :</span></dt><dd>time series</dd><dt><span>time_coverage_start :</span></dt><dd>2023-05-07T00:00:52</dd><dt><span>time_coverage_end :</span></dt><dd>2023-06-13T16:23:37</dd><dt><span>geospatial_bounds :</span></dt><dd>80.52392166666667N, -3.8737749999999997E, 78.04355166666666N, 15.660881666666667E</dd><dt><span>platform_altitude :</span></dt><dd>Located at approximately 25 m a.s.l</dd><dt><span>location_keywords :</span></dt><dd>Oden, Arctic Ocean, Fram Strait, atmosphere, on the ship</dd><dt><span>comments :</span></dt><dd>This file consists of 1 min averages of ceilometer data measured with the Vaisala Ceilometer CL31 that was located on the 7th deck, above the bridge (at approximately 25m).The sky condition measurements are time averages to represent an area average. The vertical resolution is 10m * 770, but the measurement height (25m) is included in the backscatter profile ranges, as well as in the cloud base heights (cloud_base_altitude and sky_condition_cloud_altitude). Geospatial bounds are taken from the gps location of the weather station dataset located on Oden. Time variables month, day, hour, minute and second are approximated to the nearest second. Data produced by Sonja Murto. See the document - Readme_CL.txt - for more details.</dd></dl></div></li></ul></div></div>"
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
],
"text/plain": [
"<xarray.Dataset>\n",
"Dimensions: (cloud_layer: 3, range_levels: 770, sky_condition_layer: 5, time: 54251)\n",
"Coordinates:\n",
" * time (time) datetime64[ns] 2023-05-07T00:00:52.2...\n",
" * range_levels (range_levels) int32 1 2 3 4 ... 768 769 770\n",
" * cloud_layer (cloud_layer) int32 1 2 3\n",
" * sky_condition_layer (sky_condition_layer) int32 1 2 3 4 5\n",
"Data variables: (12/15)\n",
" day_of_year (time) float32 127.0 127.0 ... 164.7 164.7\n",
" year (time) int32 2023 2023 2023 ... 2023 2023 2023\n",
" month (time) int32 5 5 5 5 5 5 5 5 ... 6 6 6 6 6 6 6\n",
" day (time) int32 7 7 7 7 7 7 ... 13 13 13 13 13 13\n",
" hour (time) int32 0 0 0 0 0 0 ... 16 16 16 16 16 16\n",
" minute (time) int32 0 2 3 4 5 6 ... 18 19 20 21 22 23\n",
" ... ...\n",
" vertical_visibility (time) float32 nan nan nan nan ... nan nan nan\n",
" highest_detected_signal (time) float32 nan nan nan nan ... nan nan nan\n",
" cloud_base_altitude (time, cloud_layer) float32 808.3 ... nan\n",
" sky_condition_cloud_fraction (time, sky_condition_layer) float32 6.0 ......\n",
" sky_condition_cloud_altitude (time, sky_condition_layer) float32 775.0 ....\n",
" backscatter_profile (time, range_levels) float32 0.0003533 ... ...\n",
"Attributes: (12/27)\n",
" Conventions: CF-1.8\n",
" source: Ceilometer\n",
" instrument_model: Vaisala Ceilometer CL31\n",
" creator_name: Sonja Murto\n",
" creator_email: sonja.murto@misu.su.se\n",
" creator_url: https://orcid.org/0000-0002-4966-9077\n",
" ... ...\n",
" time_coverage_start: 2023-05-07T00:00:52\n",
" time_coverage_end: 2023-06-13T16:23:37\n",
" geospatial_bounds: 80.52392166666667N, -3.87377499999...\n",
" platform_altitude: Located at approximately 25 m a.s.l\n",
" location_keywords: Oden, Arctic Ocean, Fram Strait, a...\n",
" comments: This file consists of 1 min averag..."
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ds_all"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [],
"source": [
"#save to netCDF\n",
"ds_all.to_netcdf(load_data + 'CL31_ceilometer_ARTofMELT_20230507_20230613_1min_v01.nc')"
]
},
{
"cell_type": "code",
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAElCAYAAAAV9s4VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABjaUlEQVR4nO2dZ5gUxdaA37PLwpIzSBAJIhIkCAJGVAyYvdeECcSAYk5c9frpNeeICooKgmLAjBgQCSKKRAmScxaW3SWz+Xw/umdnZif17E7a2Xqfp5/prq7qPtXT3aer6tQ5oqoYDAaDwRCMlHgLYDAYDIbExygLg8FgMITEKAuDwWAwhMQoC4PBYDCExCgLg8FgMITEKAuDwWAwhCSqykJE7hGRpSLyt4h8IiLpIlJPRCaLyGr7t65H/odEZI2IrBSRsz3Su4vIEnvfMBGRaMptMBgMBm+ipixEpBlwJ9BDVTsBqUB/4EFgiqq2BabY24hIB3t/R6AfMFxEUu3DjQAGA23tpV+05DYYDAaDL9HuhqoEVBWRSkA1YBtwETDG3j8GuNhevwj4VFVzVXU9sAboKSJNgFqqOkutGYRjPcoYDAaDIQZUitaBVXWriLwEbAIOAT+r6s8i0lhVt9t5totII7tIM+BPj0NssdPy7fWS6T6IyGCsFgjVq1fvfvTRR0eySgaDwZD0zJ8/f5eqNiyZHjVlYY9FXAS0AnYDn4vINcGK+EnTIOm+iaojgZEAPXr00Hnz5oUjssFgMFR4RGSjv/RodkOdAaxX1QxVzQe+Ak4AdthdS9i/O+38W4DDPco3x+q22mKvl0w3GAwGQ4yIprLYBPQWkWq29VJfYDkwARho5xkIfGuvTwD6i0gVEWmFNZA9x+6y2icive3jDPAoYzAYDIYYEM0xi9ki8gWwACgA/sLqIqoBjBeRG7AUymV2/qUiMh5YZue/TVUL7cMNAT4AqgI/2ovBYDAYYoQkq4tyM2ZhMESH/Px8tmzZQk5OTrxFMZSB9PR0mjdvTlpamle6iMxX1R4l80etZWEwGJKTLVu2ULNmTVq2bImZH1s+UVUyMzPZsmULrVq1clTGuPswGAxhkZOTQ/369Y2iKMeICPXr1w+rdWiUhcFgCBujKMo/4f6HRlkYDAaDISRGWRgMhqTgscce46WXXorIsU499VSCGci0bNmSXbt2ReRc0aBfv37UqVOH888/P2LHNMrCYDAYEozCwsLQmYIwdOhQPvzwwwhJY2GsoQwGQ+m5+25YuDCyx+zaFV57LWiWsWPH8tJLLyEidO7c2efFuHDhQm655RYOHjxImzZtGDVqFHXr1uXUU0/lpZdeokePHuzatYsePXqwYcMGDh06xKBBg1i2bBnt27fn0KFDjsW9+OKL2bx5Mzk5Odx1110MHjyY999/n7///ptXX30VgHfffZfly5fzyiuv8NFHHzFs2DDy8vLo1asXw4cPJzU1lRo1anDvvfcyadIkXn75ZU466aRwr1wxffv2Zfr06aUu7w/TsjAYDOWKpUuX8vTTTzN16lQWLVrE66+/7pNnwIABPP/88yxevJhjjjmGxx9/POgxR4wYQbVq1Vi8eDEPP/ww8+fPdyzPqFGjmD9/PvPmzWPYsGFkZmbSv39/JkyYQH5+PgCjR49m0KBBLF++nM8++4zff/+dhQsXkpqayrhx4wA4cOAAnTp1Yvbs2T6K4sUXX6Rr164+y5133ulYzrJiWhYGg6H0hGgBRIOpU6dy6aWX0qBBAwDq1avntX/Pnj3s3r2bPn36ADBw4EAuu+yyoMecMWNG8Yu3c+fOdO7c2bE8w4YN4+uvvwZg8+bNrF69mt69e3P66aczceJE2rdvT35+Pscccwxvvvkm8+fP57jjjgPg0KFDNGpkOd5OTU3lkksu8XuOoUOHMnToUMcyRQOjLAwGQ7lCVUttulupUiWKiooAfOYYlOaY06dP55dffmHWrFlUq1aNU089tfi4N954I8888wxHH300gwYNKpZ94MCBPPvssz7HSk9PJzU11ScdrJaFqwXiySmnnMKwYcPClrs0mG4og8FQrujbty/jx48nMzMTgKysLK/9tWvXpm7duvz2228AfPjhh8WtjJYtWxZ3MX3xxRfFZU455ZTil/Hff//N4sWLHcmyZ88e6tatS7Vq1VixYgV//ukOydOrVy82b97Mxx9/zJVXXlks+xdffMHOnTuLZd+40a9HcC+GDh3KwoULfZZYKQowLQuDwVDO6NixIw8//DB9+vQhNTWVbt268cEHH3jlGTNmTPEAd+vWrRk9ejQA999/P5dffjkffvghp59+enH+IUOGMGjQIDp37kzXrl3p2bOnI1n69evH22+/TefOnWnXrh29e/f22n/55ZezcOFC6tatC0CHDh146qmnOOussygqKiItLY233nqLI444ogxXxJeTTz6ZFStWsH//fpo3b87777/P2WefXaZjGkeCBoMhLJYvX0779u3jLUa54Pzzz+eee+6hb9++8RbFL/7+y0COBE03lMFgMESY3bt3c9RRR1G1atWEVRThYrqhDAaDIQC9evUiNzfXK+3DDz/kmGOOCVquTp06rFq1KpqixRyjLAwGgyEAs2fPjrcICYPphjIYDAZDSKKmLESknYgs9Fj2isjdIlJPRCaLyGr7t65HmYdEZI2IrBSRsz3Su4vIEnvfMDH+kQ0GgyGmRE1ZqOpKVe2qql2B7sBB4GvgQWCKqrYFptjbiEgHoD/QEegHDBcR1wyVEcBgoK299IuW3AaDwWDwJVbdUH2Btaq6EbgIGGOnjwEuttcvAj5V1VxVXQ+sAXqKSBOglqrOUsvOd6xHGYPBYDDEgFgpi/7AJ/Z6Y1XdDmD/NrLTmwGbPcpssdOa2esl030QkcEiMk9E5mVkZERQ/ORn8WKYMCHeUlQQdu+Gr76CbdviLUlSYeJZWCxcuJDjjz+ejh070rlzZz777LOIHDfqykJEKgMXAp+HyuonTYOk+yaqjlTVHqrao2HDhuEJWsEZPRquuSbeUlQQ1q2DSy4BM2nUEICyxLOoVq0aY8eOZenSpfz000/cfffd7N69u8wyxcJ09hxggarusLd3iEgTVd1udzHttNO3AId7lGsObLPTm/tJN0SQoUPhhhviLYWhvBGncBYmnkUQjjrqqOL1pk2b0qhRIzIyMqhTp06pjuciFt1QV+LuggKYAAy01wcC33qk9xeRKiLSCmsge47dVbVPRHrbVlADPMoYIkTTptCpU7ylMBhCY+JZOI9nMWfOHPLy8mjTpo3j+gQiqi0LEakGnAnc7JH8HDBeRG4ANgGXAajqUhEZDywDCoDbVNXVFhsCfABUBX60F4PBEGfiEM7CxLNwyPbt27n22msZM2YMKSllbxdEVVmo6kGgfom0TCzrKH/5nwae9pM+DzDfvQaDwcSz8CBQPIu9e/dy3nnn8dRTT/l4wi0tZga3wWAoV5h4FsHjWeTl5fGvf/2LAQMGhGxRhYPxDWUwGMoVJp5FcMaPH8+MGTPIzMwsvi4ffPABXbt2LdNxTTwLgyHWLFgA3bvDt9/ChRfGW5qwMfEsnGPiWRgMBoMhICaehcFgMFQgTDwLN0ZZGAwGQwBMPAs3phvKYEhGioogIwMOHvTZtXXrCDZsCD5JzWAoiVEWBkMykp0NjRrByJF+dv1CRsYXfgoZDIEx3VAGQzJSvTq8+SaU0r+QwVASoywMhmQkPR1uuy3eUhiSCNMNZTAYkgITz8Ji48aNdO/ena5du9KxY0fefvvtiBzXtCwMBoMhwSgsLAzoJyoUTZo04Y8//qBKlSrs37+fTp06ceGFF9K0adMyyWSUhcFgKDWrV9/N/v0LI3rMGjW60rbta0HzmHgWgalcuXLxem5ubrHjxLJiuqEMBkO5wsSzCB3PYvPmzXTu3JnDDz+cBx54oMytCjAtC4PBUAZCtQCigYlnEZrDDz+cxYsXs23bNi6++GIuvfRSGjdu7Li8P4yyMBhiTEZWKtfwE6+tVYw7vvAx8SzcBIpn4aJp06Z07NiR3377jUsvvTTs+nliuqEMhhizfckufuZsfrv3q3iLUi4x8SyCx7PYsmVL8ZhLdnY2v//+O+3atXNUn2BEVVmISB0R+UJEVojIchE5XkTqichkEVlt/9b1yP+QiKwRkZUicrZHencRWWLvGyal/awwGBKABkU74y1CucYznkWXLl249957ffKMGTOGoUOH0rlzZxYuXMijjz4KWPEsRowYwQknnOBl+jpkyBD2799P586deeGFF8KKZ1FQUEDnzp155JFH/MazOPHEE/3Gs+jcuTNnnnkm27dvL+2l8Mvy5cvp1asXXbp0oU+fPtx///0hHR86QlWjtgBjgBvt9cpAHeAF4EE77UHgeXu9A7AIqAK0AtYCqfa+OcDxgGDF3z4n1Lm7d++uhgjxzz+qhx+uOnp0vCVJCra+9LGC6jvcFJfzL1nyb50zp1Opyy9btiyC0iQ35513nv7yyy/xFiMg/v5LYJ76eacGHbMQkWMd6Jt8VV3ip2wt4BTgOlsp5QF5InIRcKqdbQwwHXgAuAj4VFVzgfUisgboKSIbgFqqOss+7ljgYltpGGJB5cpwxhlw+OHxlsRgKBfs3r2bnj170qVLlwoTz+JXYC7WF30gWgEt/aS3BjKA0SLSBZgP3AU0VtXtAKq6XUQa2fmbAX96lN9ip+Xb6yXTfRCRwcBggBYtWgSrlyEc6taFUaPiLUXSMZ/u/PknlOi5MCQQJp6Fm1DKYq6qnh4sg4hMDXLsY4E7VHW2iLyO1e0U8FB+0jRIum+i6khgJFhhVYOcy2CIOyO5mYV3QXkMmaBlsEgqTyRzPAsNM6R20AHuUIoiRJ4twBZVdV3tL7CUxw4RaQJg/+70yO/Zz9Ec2GanN/eTbjCUe8J8XhOC9PR0MjMzw37ZGBIHVSUzM5P09HTHZRzPsxCRzljdTcVlVDWg7Z+q/iMim0WknaquBPoCy+xlIPCc/futXWQC8LGIvAI0BdoCc1S1UET2iUhvYDYwAHjDcQ0NhgTleP7gmutOiLcYYdO8eXO2bNlCRkZGvEUxlIH09HSaN28eOqONI2UhIqOAzsBSwOVoRIFQhuJ3AONEpDKwDhiE1ZoZLyI3AJuAywBUdamIjMdSJgXAbapaaB9nCPABUBVrYNsMbscSVZgxA045BSpA10OsuI4PGHxr+VMWaWlptGrVKt5iGGKM05ZFb1XtEO7BVXUh0MPPLr/mAar6NPC0n/R5QKdwz2+IEO+9B4MHw/jxEMJtgsFgSE6cTsqbJSJhKwtDkjBjhvVrz5g1GAwVD6fKYgyWwlgpIovt2dTO5sMbyj8XXmj9DhkCEXJ3bLApLAydx2BIAJx2Q40CrgWW4B6zMFQULrsMbrzR6o4qKoIU41IsEvxFN6hVCw4ciLcoBkNInD71m1R1gqquV9WNriWqkhkSi3fftQa6KxlHxZHibYbAwYPxFsNgcITTJ3+FiHwMfAcUT2cMZjprSGKWLrVmkl19NVSpEm9pyh8JMD/BzJEwhIvTlkVVLCVxFnCBvZwfLaEMCc7XX8MNN5juk3KLMX82hI+jloWqDoq2IIZyxDZ7An3t2vGVIxno4c+y3GBIPIK2LGzHfEFxkseQZNSvD40bQ4CoXoYw+N//4i2BweCIUC2LB0VkV5D9guVJdmTkRDIkPE8+aS2GsnPnnXC+6dE1JD5OXJRfECLP5AjJYjBUDDxcpjTavhATN89QHgiqLMxYhcEQBRo2LF7NyKkVR0EMBueY2VUGQ6xp0iTeEhgMYWOUhSF8duyAb7+FrKx4S2IwGGKEURYGZ4weDT17QkGBNSh78cXW5DyDwVAhcKQsRKSxiLwvIj/a2x3seBSGisL27TB3ruUbyhXLoGPH+MpkMBhihtOWxQfAJKwIdgCrgLujII8hEXnwQXj4YWu9qAjq1LHWq1WLm0gGgyG2OFUWDVR1PLbHWVUtAIxv5YqCh/UOqtCrF/znP8b7bASozv54i2AwOMLp035AROpjhVLFjoe9J1QhEdlgx75YKCLz7LR6IjJZRFbbv3U98j8kImvsuBlne6R3t4+zRkSGiZjYnjHlvvvgueesdVU47TR4/nmoXDm+ciUBR7Eq+if5/Xf4yvj8NJQNp8riXmAC0EZEfgfGYsXXdsJpqtpVVV1OcB4EpqhqW2CKvY0dia8/0BHoBwwXEZc/iRHAYKCtvfRzeG5DBFi6FNq/fCPTODUhPKYmEwvoHt0TbNoEJ50El1wS3fMYkh5HykJVFwB9gBOAm4GOqlraSHkXYUXew/692CP9U1XNVdX1wBqgp4g0AWqp6iy1/CqP9ShjiAE5ObAioz77qOmOlGfiMJQPjjgi3hIYkoSgM7hF5N8Bdh0lIk7iWSjws4go8I6qjgQaq+p2AFXdLiKN7LzNgD89ym6x0/Lt9ZLp/uQdjNUCoUWLFiFEMzjFpR82c7jVspg71zKjnTABLgjlDcZQEtOJaiiPhPIN5XoTNMJqVUy1t08DpgOhlMWJqrrNVgiTRWRFkLz+HiENku6baCmjkQA9evQw/SURol4963cBx1rK4osvrISRI42yKAVNGhbEWwSDIWyCdkOp6iDbP5QCHVT1ElW9BGtcISSqus3+3Ql8DfQEdthdS9i/Lj9qW4DDPYo3B7bZ6c39pBtixBFHwAOnz+VaPrSURf/+Vsvi0UfjLVpy4DIeiCbTp0f/HAH45x9YuzZupzdECKcD3C1dXUc2O4CjghUQkeoiUtO1jhVl72+sgfKBdraBwLf2+gSgv4hUEZFWWAPZc+zz7hOR3rYV1ACPMhULVfj115gPMleqBM9d+AenYp+7WzcrrOpxx8VUjmRkO4eR9dAL0T9Rnz7RP0cAHn8cTjghbqc3RAinMbini8gk4BOsVkZ/YFqIMo2Br20r10rAx6r6k4jMBcbbM8A3AZcBqOpSERkPLAMKgNtU1TWXYwjWxMCqwI/2UvH44AO4/noYNw6uuip251WFKVOsddcAhiEi9GQOZzKZUfEWJIqsWAE7jR/2co/TsKq324PdJ9tJI1X16xBl1gFd/KRnAn0DlHkaeNpP+jygkxNZkxpXW37dutie99tv4bvvrHVjOhtRFEH8D8FFll9+gTPOiP55/NC0KRx5ZOnLL18O7dtHTh5D6XA8BVdVv1LVe+wlqKIwJBmeykkV5s2zwoHu3Rs/mZKEahwkndzon2js2OifIwAffwxr1pSu7FdfQYcObpsKQ/xw6khwn4jstZccESkUEfOmiDU5OfE578yZ7nVVmD8fnngC9htXFWVlFe14q/2b0T9RYfn0zjPVtr+cPz++chicT8qrqaq17CUduASIwR1u8OLll+Nz3koevZWHDsENN1hKo2nTwGUMzonFOJDPOcpHd+Jbb1m/L70UXzkMpYxnoarfAKdHVhRDKA6RziYOJ3fEKMjLi92J09Lc6y1bwpgxAbMawqMIibmyKE+u1USKaNx4I1WqhHRFZ4gyTruh/u2xXCoiz1FePk2SiF/pwxFsYsG2xrHtkjr+eO9tM8gdMS7mm9hcz3hZsZWxblWqHOTTT1ty/vkjIySQobQ4NZ31nKZbAGzA8uVkiCGd+Jv3uZ42xHiGU7du3tvGfDZifMeFUHh39E8Ur/+sqAhIDZktMFYryPIYZIgnTpXFe6r6u2eCiJyIe/a1IQY0ZyvXM9onfc8euPVWGDQoStaRJbst4tyyOOkkK0jfO+/EVYzIkZER/XPES1ls2cIlzGUOPYHw/bU9NfQQr7/+BkuXmll98cbpmMUbDtMMcSAnxzJPXL06SicoqSzi3LLIyrKWpCEWTi/j9Z/VqEFl8kindN2mPb99jG++uZ3CA2aiRbwJ5XX2eCwHgg1F5F6PXbUoW9vSUBq6dYO//or9eUtGxItzy+LWW72D95V7ataM/jnipSzq1y9T8cWLrXutxp6tQBlm9hnKTKhuqMpADTuf5x29F7g0WkIZSkfUpj2kp3tvx7llcfvtcT19RBApQqSIoqJKlp+taJMI40yqYftnvx3Ldnb9gUYhchqiTSivs7+q6uNAb1V93GN5RVWj1elhCBNXl8x//hOlE5R8wGvXjtKJKg7PPHM+U6akhc4YKRJhUl4pZLiKcQDso1akpTGESahuqNdU9W7gTfFjjqCqF0ZLMEMI5s+3YmEDBzbuAhrE5rzffw/nnhubcyUxvXt7+MK8++7onzARWhaFhd4TPB1QxXaFUpWDQLUoCGVwSqh/7kP718yfTDRefbVYWdSb/BlwW/TO5dmySIQv1HLOlNk12JrejhYtVloJt0Xxv3Nxxx3RP0cA1BW/rBQKK61GOuyHc/gRy3GEIV6E6oZyeWTpandJFS9A16hLZ3DErmlLYneyRPhCLedkpD1UrCg20iI2BgNxjmgoaKm8CRaJZUczi+ND5DREG6emswP9pF0XQTkMTvD8wne5DAfW5kfZ9LJ1azj1VGu9bt3onqsCcFirz4vXW7A5jpLEmFK4GXEVUb/RlQ2xJKiyEJErReQ7oJWITPBYpgGZsRHR4MnfdOQKPmUZbrtzSQuvHzhsqleHJk2sdVdAbkOZycqyLXwqikPG5s1D5ylBpRSr2/O/PBNpaQxhEuot8wewHWv01NPl6T5gcbSEMgRAhJ00YjxXcJttUghwdO3tQQpFiE8+sX6NX6jIU716TE+XlTWZwsIYOuY7oiVsToE6dcIv26gx7IYUTPdnvAk1ZrFRVaer6vElxiwWqGqBkxOISKqI/CUiE+3teiIyWURW2791PfI+JCJrRGSliJztkd5dRJbY+4ZJeXKbGQNSKke5ZQEwYoT1a5RFRInH1YypogCrLymldHN4K1WvDED1tPxISmQoBaG6oTyDHnku+8IIfnQXsNxj+0Fgiqq2BabY24hIB6zY3h2BfsBwEXHdYSOAwUBbe+nn8NxJR3HfbY/jitMqp8XgldO8uTUbN9VM3I8k8+kebxESmta1rUlEF6d+FyKnIdqEall4Bj3yXGqqashZMiLSHDgPeM8j+SLAFRBhDHCxR/qnqpqrquuBNUBPEWkC1FLVWaqqwFiPMhUWUXezPKVSqcKShMf558OuXZYHP4MX2dnQpw9880145dLTD5JH5ajIlEhEpDFqWrRxJ+y3jIhUF5GrReR7B9lfA/4DXh2OjVV1O4D965rH3wy8TEO22GnN7PWS6f5kGywi80RkXkYsPHnGE4+Hp1oVM/chnuTlwX//W5WcnGEh8y7xsHKuVm0/DUny+9Sm1C7GTYdzwuA0+FFlEblYRMZjDXifAbwdosz5wE6PuRohT+MnTYOk+yaqjlTVHqrao2FSeZpzczpTKSSFk6q7HQo2q+msR/DgwWhJZahSJYfDDrsrZL6SbqDaEv7cA4MhHoQaszhTREYB67EcB34IZKnqIFUN1Yl4InChiGwAPgVOF5GPgB121xL2rysmxhbgcI/yzYFtdnpzP+kVEgFSUOS3Ge5EB+MIL7xgGd08/nj0ZKuoHDpkfbv8/PNDYZUbMeLFaIhjMESFUC2LSUAb4CRVvcZWEI5s2FT1IVVtrqotsQaup6rqNcAE3JP8BgLf2usTgP4iUkVEWmENZM+xu6r2iUhv2wpqgEcZAyCVQiuLadPg4Yevpnp1f/MrDWXB5chx69YqYZWbN++sKEiTeOzdmMX+/CqlihuvKoBSUKOIwsIYhhI2+BBKWXQH/gR+sc1cb6DscSyeA84UkdXAmfY2qroUGA8sA34CblNVV2f8EKxB8jXAWuDHkgetSMyiN3NwW0M5aVmIQKNGm6hde0vIvIbwSEmBF198l1mzQrvU2OvRY9i0aYzD48aJHzmXrTSHr74qVfnq1ffw9xcZbNr0JgWODPYN0SCogb6q/gX8BTxgh1G9EqgsIj8CX6uqoyjqqjodmG6vZwJ9A+R7GnjaT/o8oJOTc1UE7uNlarCfn10JDpTFjh1FdO48k0WLTo6qbBWR1FThhx9udJR3ewzmTyYspbRocg2Ob9w4lBEj7ueFFyIplMEpjq2hVPV3Vb0dyxLpNTCevRIGB26f69e34gJ06fJbtKWpcKRkOrdo+uWXKAqS6JRKWRiT2UQh7Km/qlqENZYxKfLiGIISaOJ669Yhi9atm0xBqxMLyXfeF5+d7VGutOakZeSJJz7lsMPWF/uGjBllbFkY4ksM/EQYos5JJ4XMsmP7ETEQpGLSuIHzeS6lcY8UaaZNuwKAjz+O8YmNsijXxGDqryHqpIT+G2fPOo/Fi09iwYLTYyBQxaJubedO7hYtcq9XtJfgw+O78OCD8ZbCUFocKwsROUlEBtnrDW3zVkMs8eiGCte/v3G9GD1SUqBy5UPcmBp0nmqF55nvjuH558MtZW7cRMFRN5SI/A/oAbQDRgNpwEdYE+8MMWQxxzCLE6hFeJ5DxQwURpXx4w8ne+pRwC2Oy5z+z+/REygBeeSR/mzZchTwhOMyilCpkntMyHz0xA+nLYt/ARcCBwBUdRtQM1pCGQKzz77se6kdVjn3Q2aURrzJzDwMgJPzZ8ZZktjSru0CjjxyVdjlUlIqhu+zo46CG51ZYMcFp8oiz/b4qmA5E4yeSIZgLKZzqctas2EN0SCcltuwYW8CUFTBhgyrSD61Qvqq9qWijO2sXg3vvx9vKQLj1BpqvIi8A9QRkZuA64F3oyeWIRB+XzAiHHvsFKpX3wP8O+YyGWwcKuP9+2uzZk0X0vMqRjjVd7mRtbSxraHCf/Hn5Jhv00TAkbJQ1ZdE5ExgL9a4xaOqOjmqkhnC4vqLnqRO820YZREHVNm+rRXscfZSW7DgDG66aSGjuS66ciUIN2J9Ln9e1CLOkhjKglMX5dWxHAEOxWpRVBWRtKhKZvDLUfjv8z386KU0a706YDkzwB1dbrl1Hl+PvTesMmtpEyVpEpO8Sml06jSeLVuGUVRUujCpZoA7fjjtNJ0BVBGRZsAvwCDgg2gJZQhMY3b4Ta/VaFfQcuYhiz6Twoz2m0t4XmrLO82aWY4T16y5i7Vr74+zNIZwcaosRFUPYvVxvKGq/wI6RE8sg6F8ccUVL9K9e3g9s5WoGC5Uc6nMLHp7pe3Z48wSTLXiDHAnOo6VhYgcD1wNuMKpGlchscY0DxKWAQOeoFev8Dzn1w5zrkx55R8O4wRm8cwzY+MtiqEMOFUWdwEPYbklXyoirYFp0RPLEIiqHCpVOTNmEV2qVdtP584zQmf0IIf0KEkTJfLzYcOGUhdfv94zyoC5H8sbjpSFqs5Q1QtV9Xl7e52q3hld0Qz+aMsaTmQmfQnP17VplESfgoLwbD5SnAWdTBwuvxxatYIZ4SlF14fKmjXdwj+nCEVFFWs+SqLi1BqqoYi8KCI/iMhU1xJt4Qz+acwOGuIdQ2HixJvIymocsIzrgTX9v9EhK6sRa9d2CatMK9ZHSZrosDntG/Z0APr0Ca/gk0+V6bz799ctXjcfPfHDqcoeB6wAWgGPAxuAucEKiEi6iMwRkUUislREHrfT69khWlfbv3U9yjwkImtEZKWInO2R3l1Eltj7htmxuCssX3Ipn3CVV9rhuolUDeUWoUJftqgycuQLTJlyVeiMHoTrDDLerL0V/nor/HJNBp7FKtpGXiBDTHGqLOqr6vtAvqr+qqrXQwnzBl9ygdNVtQvQFegnIr2BB4EpqtoWmGJvIyIdgP5AR6AfMFxEXPFCRwCDgbb2Ep6NYrIjQoqUsy6NZEKVSZMGsnjxKfGWJCFJqyy0ZU28xTCUEafKwjWDZruInCci3YDmwQqoxX57M81eFLgIGGOnjwEuttcvAj5V1VxVXQ+sAXqKSBOglqrOsv1TjfUoU7EI0qASNKi7iYrdFktMTqZihLjN2p3CucVGlOFRynhJhijgVFk8JSK1gfuA+4H3gHtCFRKRVBFZCOwEJqvqbKCxqm4HsH8b2dmbAZs9im+x05rZ6yXT/Z1vsIjME5F5GRnO4yJXBIw1VGKxnKNpycZ4i+EYr5d2mN4A8/KFHznXKy0/P/gk0opK48YbmDmzPjt2fBpvUXxw6htqor26BzjN6cFVtRDoKiJ1gK9FpFOQ7P6+fTVIur/zjQRGAvTo0aNCvR0FDaoOsg5Vi5kshtCUN+V96JDrt7qjML6e+GvV5uZa34WZmT+QklKFunX7lvpYyURKShEFBVmoOo/rHiuCtizsQeqBInKhWDwgIhNF5HURaeD0JKq6G5iONdaww+5awv7daWfbAhzuUaw5sM1Ob+4n3eBBw7brqdPAtKbKC6mUrxgN1arBxRfv5LLLtob/xg6Sf8OGx9i8+aUySmfx7LPwtglWGDVCdUONBc7Cckk+HWgBvAnsI4RvKNvcto69XhU4A8uiagIw0M42EPjWXp8A9BeRKnbI1rbAHLurap+I9LatoAZ4lIkKOTkbWbFiKAcProzmaSJKo3br4i2CIQzKo6uPPXsacuBA7bAHEiTFv7LYv38x+/adzaFDkTEMGD8efgxvEr0hDEJ1Q3VQ1U4iUgnYoqouA+ufRGRRsIJAE2CMbdGUAoxX1YkiMgsrPsYNwCbgMgB7Zvh4YBlQANxmd2MBDMFSTlWBH+0lasyevQ3Vl9iy5QzOOKNdNE8VHsneBjeUD154IazsgZTFwYOrGDjwSU4/HXr1ioRghmgSqmWRB6CqBfh2/QRtR6vqYlXtpqqdVbWTqj5hp2eqal9VbWv/ZnmUeVpV26hqO1X90SN9nn2MNqp6u20VFTVWrbJcfW/Y8Gc0TxMXzKQ8Q5np2DGs7NWrw9P81yd948an2bQJPvggQnIZokqolkVzERmGNcjsWsfe9muRlAxUqmQ5eEtLS64xABNWNUqU4tulvA1wl4X0dOjKQp/0wkIH4zaLFwPnOz6XMbWNHqGUxVCP9Xkl9pXcThpSUvLs39I57TNUMIrCnxBZnQNRECQxKSgUzuMHbr3V29o+J2dJyLKane21Hawn1vTSRpegykJVxwTbn6yoWmamIolnvmZIDhqQGW8RYobra//kk7+K6jn++stqxZRnUlMtw4eiotw4S+KLcefoF8t7aFFR5CKZFRVBTg44aXmHTYhPKlUlLS2HKlUOUblyThQEqOA47PsYODB0nqQkQMtr9equIYsexNn8oEW2uc2sWU6FSkyOOGI5AJmZE0PkjD1GWfihKLcmALn760TsmCtWQNWq8OWXETukX/Lz/X+x/vxzVdq3n0OHDrOjK4AhIGPt2D91yQqeMdkI8DEzduyjIYtmUt/RKcKcVJ6wdAo2bTnOGGXhh0kfNwQge075m/Wcn58dOpMhrtzBG/EWIaZUSfevLLp0+bV4PVCLuxZ7vbbT0/27dW/dunSyJRItW8I//1jrWQn4PRF0zEJE3iBISKtkDYD068rWnPz3CezfWy/eojhm7NhHGDDgyXiLUTEJ0wRnF46dHyQ1eXnuAYbPhmdy1R2+rYin+T+v7eOOOwnY6vd4/9f4XQ5rVATcHEkxY8quXd6/iUSolsU8YD6QDhwLrLaXroSYZ1Ge2bmzBaNGPcm2FT3iLYpjNm8+KsheY0+YSAzntniLEFsCdEPNm3dW8fqAO2s7OlTlyoHfok82Gc5trX4ITzaDY4IqC1UdY1tEtQVOU9U3VPUNoC+WwkhK+vd/gVde6UvzLuGFj4w6jmwDjWIwlA/++ut0hjCcGjWyefvdHjx9/YR4i5Qw7Nu3kR07PqWgYG/ozDHC6ZhFU6Cmx3YNOy0pGTz4IQCO+XfwsGCLFkGHDrPp3Pk3brklcL6CAjgQCbP6IMqibt0dETiBoVSYmWCl5lke4t//foMjj1xEp4sG+ezPI7y45slCy5aLWL78SjZtShyfqU6VxXPAXyLygYh8ACwAnomaVAlC/YbB/6iDB2HAgMcZMuQ+3nkn8CDd++/D8cfnc+yxU1i/frP/TGXk1lvvByAvzyiNmBOmsniA59wbYfpZKpcE+cipQi77bavDrVt9Q6+mUcBD4bxqkkxxz0ugqc+OlIWqjgZ6AV/by/EVYcJebm46OTnwzDMwZ47v/pIWCwcP+j/OuHFQvfoeXn75DGbP/oadO63WRjRQ9TeZJ7keoPLO81YkYYuhQwNnTBYqVw64K51cqlbdB0DVqvv9vutHMtjZecwU7qjiSFmIyCnAUUC2vRxlpyUlmzdbXzjbtrUhJwcefhj++MM3X6Y9pcHlnG9vgO7Fww+H1q0t1wbHHjuFxo3h7rsjLbXFnj2Rm0hocIiDr9nNm+GCC96hW7epMRDIOdnZU1my5AJyc/+J3knsadWHHbbJ7+5atayvrsaN/UcOvJQvoiNXguHvNkpNXRV7QQLgtBtqqMfyCPAd8FiUZIo7S5acDEDDhluC5lu+PJtjjplJgwaWKV+g1kLPnh/x6qunA1CliuVv6q3gwyHhccQRxaurVplWRDzZvXsmhYXeTczcXHj5Zbj++v/jlFOiPCszTHJzt5CZOZGiogDN4hiSKoV+GwePUJFMwr2f37S0hfERww9Ou6Eu8FjOBDoBSd85/vffJwCQlpZLaqrvzOhGjd6kevV9NGiwnaFDb2DdOv/jEdnZC4vXd+w4wm+eMlG1avFqlL23G4LQqNEmFi48mZUrbyxO++kn68P6zz+VOnUS0Hi+mPjdN65nYsvy9n73N6vIgTF37y5e3bdvAfv3L46bKKWdwb0FS2EkJdnZjQB4/PHxALzwwtkcc4zvRKqGDd3r5547ii++8D97+tRTX/baTkkppFq1vRQV5UdIYjda6Gs94qNA/olil0NFxL6+1atbru09H+iff7Z+GzV6B4ATTphAdfbHVr6gxKafv2nTNQH3HThgzbFIyaiYlk+e7NljvVRyc+0Ji8uXsnnzqxQWHmT+/O7Mm9clbrI5HbN4Q0SG2cubwG9AqEh55ZaiolQKC1PJyakBQNeuv/rNt3y59/akSaG/zlSFZs3W8P33tcnI+LzMsrrYv99yjqNFDmYHJ+L00CTi0KE1ZGX9ArjHXPPyrNZfbm5VhvJivETzYe5c6zc7O7oti8qVA3tRnTv3LPLyKrP7q/CCKvklwVrWqlb3tFOxDh60Zihs29YGgFpn/8zatfeybt1D0RLRMU5bFq6Z3POBWcADqnpNsAIicriITBOR5SKyVETustPrichkEVlt/9b1KPOQiKwRkZUicrZHencRWWLvG2bH4o47O3eGf2Pu3VufY46ZaW9FrhqrVnUHoKioqs8+VW9X62qso6KCy9BBNZcFC86jsNCtLPbssZT4/v11+DfRc9UdLvv2WQJGyzrPCVlZTTj77FwOrGpStgMlxmvBi3/+gbQ0eOf1snl7LijYHRmByoDTMYsxwCdYymIR4MeQ1IcC4D5VbQ/0Bm4TkQ7Ag8AUVW0LTLG3sff1BzoC/YDhdvxugBHAYKyZ5G3t/TEhmEvx5nW8uxOyshqHPN6ECbcwdKjVp71pk7BwYWTclj/22Bf83/99TVHhYT77fDzRSgp5eRmsXn1nVLrCKhz2Z6NnyFqXV+5q1TZx2WWvFBtLtG8/l+YEN5yID9H9gHASpbFeEnrjTZ0xjVOZRvMJw8Mq53u94v+B57Qb6lQsn1BvAcOBVaFMZ1V1u6ousNf3AcuxQrFeBLjmaIwBLrbXLwI+VdVcVV0PrAF6ikgToJaqzrJjb4/1KBMVPB/6vCDxj3qe7n0DZGf7vqg92bChPY0auc0Hr722F926RcbD5L599fj994vZ86MfG98SN5oirF17L1u3vkFGRmJZ55RLbGXRE++Y7SJQo8Zqbr31Ptq3T9R47rH5Gt+xowX33/+z332P8AQAtdkTE1liSaOj6zGN0zn/7OAfZXl5sNG/5XDC4LQb6mXgLFXto6qnAGcDrzo9iYi0BLoBs4HGqrodLIUCNLKzNQM8zYm22GnN7PWS6f7OM1hE5onIvIyMssXPdmn2zUsD+2b55pvwHMK1bLmchx92996lp1t3x1VXlULAAOxZ7O+OK/FVkpKCaoH/fYZS0YAMWrLBI0WsXpE8q6/+5JO/9thT8a55Tk4N5s8/0+++q/gYgNRk9E3awB5DrBfcg3WiKwpwrizSVHWla0NVV4Ezpy0iUgP4ErhbVYN5xfL3iaNB0n0TVUeqag9V7dHQ01SpDLSqH1jkkSOfD/t4hx3mvitSUqy+iunTHRZ20iervlHJCgu9HVNpjL4mKwx+uqF27GhhpS39G4AaNfx8Ne/cGX3ZHFPxFFhMCTXCvWGD3+RDhxInpo7jAW4ReV9ETrWXd7HGL4IiImlYimKcqrpG9XbYXUvYv64nZgtwuEfx5sA2O725n/Socc01z1CpkvXlXbdOeA/R9997bweIKAnA9u2tAKgUNKpIeKQV+fablYznm19oYl5FBVsH79vXlQEDViECKX70cnHLIkIfNGVh1ixLwC1RHka5lMhZ/gUlwayhij/wQshVtG0Lqan5iFgvjPR06wPP9UGZCDh9awwBlgJ3AncBy4AgflbBtlh6H1iuqq947JoAuKIRDwS+9UjvLyJVRKQV1kD2HLurap+I9LaPOcCjTMQp68feq/d6T8zzd7z58/vyxBOfsHPn4bz22ilcdNHYsp3Ug5opvjb87i4niyW7kjJmVfyxWxY1ay5kwIAnUIXJmb7jWDWuvwKmJobbj7w8y6NAfn50X7KnE5n6Bh0oT0BrKKcyfbdwG7/8Upljj50CQIMG1vdwlSouK6r4K0Gn1lC5qvqKqv5bVf+lqq+qf491npwIXAucLiIL7eVcLA+2Z4rIauBMextVXQqMx1JEPwG3qaqrE3MI8B7WoPda4Mfwqumcv/8OL//gwe4G1s8/V6bqP3O99ovAu+96e8389ddLmTatPwBduvxG/fr+feb44OTGq+rbbLUaeG4O8FPxxNCt/oOOGcLB1Q3l8UAPGPAEC+YrDz400Cd76mOPwGmnxUy8YFx5pWWZl5kZ3S6xr/h3VI+f8IRoWXz+m2VJmZNTnQULTmP3bu9W57p1UZPMMUGVhT23YXGgJVhZVZ2pqqKqnVW1q738oKqZqtpXVdvav1keZZ5W1Taq2k5Vf/RIn6eqnex9t2sUfVqklLwiIV7Qq1cfW7yelpbvc0/UrUtIAjkgDIdj7V7Bmse0JDfX+96sVMk3CtkmWz/NneuzyxARtFzNfRSxvv1UC1m79kHy8nyVx6M8zmdcXqrj/4L/we2kx2E3VI1067v4uOMmcd99U4v907mYNCn+IZ5DtSzOBy4IsiQdKSnw2Wf3+d03IUAgr1WrjvW/A8s7s+fAJ0DdupH/ivsPVlyEuz4/kfR0b+uK9ev3+eSvV8+yzkm0Lt5yjcd3RWpqUUL2igSidu0rAMjKmsTmzc+zatUQVN0fFQCP8xiXx2rsIVlwqCxc74iTT/6GadOE6tV3e+2fP79vNKQLi1DKIg1orqobPRegBRDBYdnEIWtXEb16ueP47spyX6JrAsxZv/nm+bz55muOzzFo0P9KK15AcrB8yazbYbko8XxR5eYu98nvcr8QkQh+USY/P5vCwgOsW/df/vkn+mFUXn0V7rknjAL2i6BB57VeyWmVArwgqvrOso83KSlWA9/V86uax4svWg6NS7q1MYSBwy+GBjW8e/U7dfrdJ8+yZb2YM+dsn/RYEUpZvAb4fpbCIXtf0rF9wTZatnQ/Hfv2u//sff6uRAmkFF/qJVsepSEFb6sJTyusPXv6l/n48WT27NasW/dfNm16lhUrrov6rPN774XXXgujQFERgtL1Vm83Hpq923/+Bg78d8WYoqI6Pmn79r3EtGnCxo3R9fq6knYAXMmn7M7W4DNhyyshWhZ1a3mbVteo4ds33aHDbDp0mBVRscIhlLJoqao+YxOqOg9oGRWJ4szOvzP45ptb3QkefU/3+e+dCkl+vneksHnzzuDoo+dwxBGR+2T7FG+F8MEHzsr9magTi4NQWOhAa0eQgoJ97N79K3l5YQ5CRNseNcp07foeACkp0fVSvBp3ONVVf+dBlSrw0Ud+84Z0jZNo/aoOu6HOu+quoPtdVmD+lEisCKUs0oPsS7y2dATYuDCL119/i9NOs/7crdV84wKHy/jx93ttT59+OQ89NIABA54o87FdTMPbuiY111n/Un6+f7fqiYSvPUPgBy8/PzLuUzw5dGg1Cxeeyt69vl0Dljj+5SkoLEeDFjbb7EbE9u1Qv741Dzclxb/X5UhxH24X/vUa2u7gfg9wrYORiINEDmWqUTu4x4l27eIfjDuUspgrIjeVTBSRG3AwKa98Irz2Wh+mTROuvvppWldaUbwn+MeBtXOz17zC2JGHd+tl+RxnMRO6dp0eBWmigfuhS0nx/52yYIFlUFC/fmTPXLVqW7p0mUqtWic4LrNgwensO5gaOmOC4PI6u3im9eVaufLE4n0igWNoRwLB8iqgCEceXQn69YO334YVK3zyLllyUlRliRqlbPFk2vN0Bg6M3IdlaQmlLO4GBonIdBF52V5+BW7EmpyXlHTpMgOAG2/8P9KruV0LT/i2iLGDZ3LoUOCyDTW0TyonHjj9EuQr5Ui8g8vUr+3M53TtEF808ebgwdUUFu5h69bXi9NSU/27QBgz5namTYv812WlSjWpW/c0Kld2PuP6vvum+JphJzB5edbLLONvXzNr/8OW4dGCMJwf9e7tEspn119/Jcb8FMc47IYKXDxxutWC3s6qukNVTwAeBzbYy+OqeryqVohwa0v+cb8g1qxNYeC7J3Ful8Az2Qbi31rnqafG8fbbL0RcPheNS0S5PfZoZzGVE+lm9EfJWBxTp14RMO+//hXJwObe7Nu3kD//bMPu3X66ZAK8CFI1jkEiwsTlu0qLfF8JKblln4yzgqPZQy2vtPNaLvWf+X//gz17oGMEgiHFG4fdUJs2HeU3fdu21pGUpkw4ncE9TVXfsJfE8FMQK1J9L9H01ZbT25t5m6Z4K45AHkWnTLmKqVNLWiUJP/98DevWHVNmMduy2mv7/JEXOiq3cWN7Dh4M7sMqnuTnew8qp6TExzNpUVEOOTnr2LTJf5S7dp18Q7x0rrraT87E5p/dvsOUUu0rtm8fVabjViWHWiVaKPXSg4yr1aoFqWF24+3fH5ngMNEgRMsiLdX/A7hqVY9oSFMqylFDOXYsX96zeL2kh9b27WfTqtUSAN7hFrbRjCEMp3nz1dbkvDwnl9Q6ZlFRCs8++yG//35xmWVu5qG02rOMKlnOzB23bj2S6tVh/foyixAVCgq8XzArVvSMk92/9bDn5PjvtmvReplPWmFRAg64hmD5Vn/dULBy5Q0RPc///vc5mhe+CXRDAnSbFhVZYxyTJpVRsgjjsBsqv9C/YszKCh4jJ5YYZeGHIo+muIp7/dxz32f48N6MGtUZgBOZSR+mM5zbOPLIhezbV5eU/MAviOzsxtx88zxmzrwo4jIf7hEK5FgWUIVQrrss/v47sQcMd+z40Gv7s8+G8t+hsbHDHzHCN+3bb4/zTVT12533w+LmvnkTnIkzu/Pxxw+Ql1clquf5448LS+XwqAYBDDcSzWTWRRkttPbujb+bDxdGWZTA9d+uX9+Ru+76lYbV3BPVL7rI3Sd+4ADMp3txy+PHH69n8uRrgwa2KSiozKpV3dm71z0p67bb7ubaa58ss9zH4e5XHsc1xTO6Q5Gba1kWZSeoBW1GhtuVisuc+ZvvQ1vnrFkTMktIVnv1IlnnnjzZj5cbVTp1m+mTvHpHzbILYfCi3AaOCqHMMjPLGH88Bhhl4Ye77prBTTf9xeLFp7At1/0nvvHGG9x88zxOO035etxBcqjKDPoA8MMPNzBpkq+H0UCIFKEqdOs2jaOO8rVCbtQILgqjAVJyzCIUjz7qHU41oeLw2OTmwjvvlK5sWz/TY4qK8lm27EoyMr5xdpBtvl15gSzZeveZ6JOW4ufFNnz4yz5piUn0X8qlefFrq4Pla4J3oG6oCROsfU89BcCGDYk/mJ+U/p3KQo+6axm14fTi7ZkbD+fZ03xv6nXf/Q309EnPwJl55RtvvMH+/XXYsKEDALfdNhXVAurVO8s6ToYfx4VBmrRVCWLP64eWtiWKa8A4EeczLe90GSk9AztpDMQbb5xIp05/4PvCK2Lnzk+pXr0zTsK4//xZFnzaFLDGSs4/P5ucnOrOBfFzTTMyErtrKi0th6uuCj8CZLiU1nx88+Z2vD/sAEPuD+N/iCeBlEUNy4ebK/JZNC35IoVpWZSgkhTSsuXf9O5thbx7dlwLv/lqTbTiBp+Ld2i8HzgXgEOH4M47Ydo0/+eZO/dsli/vxaFDNTl0qCYff/ww33zzYKnlLvnoCQoLFwbMf+KJVvyo1NTENe9ssGZWcTdZOFiKAoqKvOvmel6dGsxsx92q7N27EgcO1KGw0E804QBdDK//3MEnrciPaWoi0bRubNxJ+L2ODpgz5xzSs7dHWJooEugr7PTTYcYMGDo0tvKUgcS+c+PATzu6cs45o3nkkeDO9+7hNRThe873Ss+3Q5Pn5cEbb1jv66X4vjRK0rHjn7Ru/ZdX2pllCAEgKHTrBsCLL77HuHEPee13tSiKilLt7dKfK1o0Zyvr1lnGBCXl98Gvl0f3S/yNFw4ysL/V+nrqKWfdH9GIVb5rV7OIH7O0eHocvuwyy4/VBcftCJA7Mrz33tNBXfqHQlUYdL4fi6hEbBp74u+D4uSTg5oHT59+qU9ci3iSgK+I+PLV1t7hF7rqquLVt7jNZ3cHwrf1VIWffw6vjGvOx0xO9LJp/+GHG7ycIz733Ad8/73lxcWlLMI1aY8qf/xR/PCvWHEcr7/+JpMnX4NIEfXqbS+OT+yFn+bC+vlul+F3PlCN8d9ag/45Oc5u+9Iqi9GjHwu4b9my40t1zGjgObcmL8+6NvVqOLOiKy3jxv2Xm28uvaegnTvj406n1ATqhnr1VWvf2rW+ZWwef/xztm5tw4YN7aMooHOMsghAWDObx40rXq3Dbq9dTi369u+vTXa2c3cS/uiG1TKphW9Xgqs+GRnNmDRpYLH9tqvvONxwslHlxBOLVwsK0rjrrts58cRvqVkzmy+/bMq5577v6DAZO8pm/nkYlpOCf0L5KijxJ3/5pdsTznXXBZilnCDk5VmWZYWFVt/5N39a98WIEf4nH0aS0gxwZ2UlvtWQFwFaPNn3PsEw7kDvujto8UaNNnuFTIgnUVMWIjJKRHaKyN8eafVEZLKIrLZ/63rse0hE1ojIShE52yO9ux3edY2IDBOJfnvT9QLdhvMbMw3LRKMxllnRQdvbxqHM0G43HnpoADVq7OGff1oGzxii6r2x/I2392jJVC5hZeqq28yZF9O3b37x7PGEisX9r38VrxYWVmLlyu5kZzfG1a3kdHBUxD3e8TBPIYQ3Tf1crCBYkyeHVYwDB+qEVyCOTJvWn+3bW3LggDUZb9Me64apW3cna9eW3bNAVEjQORWLF1vWe7n+GmclZL6B97mLYcwpCj5De//+Onz+eTiRuKJHNFsWHwD9SqQ9CExR1bbAFHsbEekA9Ac62mWGi4irY2QEMBhoay8ljxlRWlRz94cewLnFRR5VvLotfvvMMrtc9H5o18JnnWVNPEtNLZurggbsoj3eM4nz7Umyru4m10tBNYWiokq4hsYTap7FV19BZiakpVFUVIlbbpnHjz9eT15eOl9/fVvxOEYoRNwWYk/xCD/ln8t55+3hiy/Ce/gWLQqRIUFfXqHw9+1x9NHWfJ3+/V9k06YIdn/8+GOZin/77S1kZTWKkDDRYcoUuOWWEt4QAnRDvXTceEZzHR0G9Qp6zD17GjJy5HNeaUF6rqJK1JSFqs4ASkYWuAiKPe2NwW2/eBHwqarmqup6YA3QU0SaALVUdZZaQQ3G4sTmsQxsOtiQsWMf5eqr15BDOss52m++lwgeCSltkmV337HAetNsx/+0fW9fR9YN1b49vP663+xBuYV3WEZHKuGrdDIzm/Lmm6/x4IM/+CkJhydaV3C9ej6j7jk5NRg27E0WLerj6BCFlcZ7bSspHDxYi/x8Z91T/+NxAAYPdqd9ccknsHu3d0bVgHHbd+1qyvPPj+LWW2dx9tkH6U38Ip35Y+/e+l6D7gPz3I4wX3nl7cidqF8/uO46r6QGOA8m9e67z3HjjT5x2BIKlxua9p46NkBvQOs6WVzHGGrWCr+j5Pg4DXvFesyisapuB7B/XZ8KzcDDXwVssdOa2esl0/0iIoNFZJ6IzMvIKL3r7YMHa5GdfRidWMrRrCxOz/WIGXEfrwQ+wK5dVP3JCrF5VqZlYnsYO6jrozvhzDM/9Enr3BkaNy6t9IH58su72LnTvylw9UQ0Wy9zj6P3qH24A9YuI4GjPByCXvrllTza2vc/CxRn4cCBOvz00yCWL+9NXl7VqFhYlZa8XGX48Fe4805r9rkq1MHyPrt9e0v2769LVlYEb0QRruDT4s2nedhx0QMHapOd3dh6hhLU8mnTpiA7A7U+HdSlqCjFy0VQGV5tZSJRBrj9XTENku4XVR2pqj1UtUfDhmUbLPZHZZw5PhvdcCh3OwxRXrWq29eNq4vos8+gf/kOmx0ZUlK4hC+c5fXzMP4213uiYpHH7V6WnqMns+/wSXvqqX95ba/mSJ85OBAdc9zSUpDjPQ+lqAhq3bgQgOefHx35E4pwC1ZrJY080h36L/Mkm8TxlVQSv+99h44Ep0+/1CftXjuCYFFRJapX3+OzP9bEWlnssLuWsH9dTia2gFeIuebANju9uZ/0xOHdd32SJnE2KwN0X3ly6aWv0qWLOz5C2A+on0hiycYRgYLm+J1X4c20md6zpbvxF7feei833BD6i3YIwx3JB/h9ERzJWo5ilW/WBFIWot4D/qmpsEn8tzyL6d69TOfsgtUtW40Ahh9OtHiCjhH18DdWHajlUKIOqr6v4lc8urpdY47Tp1/m93Bnngl9+zqTs7TEWllMAFwOlAYC33qk9xeRKiLSCmsge47dVbVPRHrbVlADPMpEn1dfDZ3nxhutX4+JCp/hbhZcjzsOwNF4v9xvuulBevVyjyGkpIQZVCLkyGs5J1gT/YXAgaRefdV60Ze0mqpLNh06zKJdu3kh3zeN8HaWdSUfU9V+wXXA1xx21CjfsJf+ulkqEecZ8x7zUfyZrk6YMIScnKps2WL1vV1yicds6Zo14ZRTSn9ukWJlGdBs9rvvgh6iE0tKf/4oU9u/d3eLEN1QJU318/Otyb1N7G/j++//xWe+RV4erFxpxYnaupWou+6PpunsJ8AsoJ2IbLHjdj8HnCkiq4Ez7W1UdSkwHlgG/ATcpqquu3oI8B7WoPdaoGxmFSE4Cw9/+HXr+ux3xQr2ocD9ErgM98DqCtx/8Bt4d1+kpBQVfzFs3draNg8NAwd9VRsJ8aWYyKSkBPa19W3gb4bp0y/nyy/vZONG75nzivDll3czYcItYYvyMVcXW8ctw3L69tFHMM82dvvww0fo1+8AZ53l7vqq5sdf16fEuX/RfjmlUkCKhynxnf2ssbm77x5CevohMjObugq4y5b1i96JsjgY2tQ8UfHruaOUYVUnT74WgFOYETDP88/D0UdDnTrQpk2xm6moEU1rqCtVtYmqpqlqc1V9X1UzVbWvqra1f7M88j+tqm1UtZ2q/uiRPk9VO9n7bretoqLGz5ztnRBsNCnAKPQlWB5dBw16hGHD3AOfng9ISkohOTnVWbjQiin82msjLCd1wWaAZWZ6bzswYWrhZTfg5mo+Clk27ohQEMjXZckJJB7s3VufN998nRUrvB097qUW06ZdwcyZ/yrVe6/kJ8Lgwdb4kssfem5uNfLzg7uGD/R/xIyUFCZwATM4hVRxK4uCQutVMGTIXB54wNtibv36jvz66yXWRhkHl10tq4DdiyE4izDdGsSbQMrCzw24YUN7rr56Db//fgGjR1stVdfEULCcUGZnN6JqWj7LlsGjj7rL/jq1gOHDsXo6bDc/kSZRBrgTFz+tC8By+rTEu0m8jPbcx0scywLW0YqdO1t4hUz1fEBEiqhRYw+VKlmT+Yq7TPZas6/vuzOfST+W6JZaVaIP/K3Se6p8jxu9thOyG1ikeKKhD/M9XEYUFgaYCeWmgFTq+7FGKwtXXAFduwK7nJuAJgIXMJETmOU1ZrH3kNXtsW5dZ+bMOSdq567NXj7nUn4q5XSpumQnXgzg3Fwytwfwm+5Hua5bB29uvogMGvjs27atDf/3fxOKzZk9x3b+85+fGTbsTT6+/FtOPdW73L6DlTj/fOD994M6EC0LRlmU4DH+B0Btdvv+0TM9Atx06QIlLK7WVW7PK9zHQrqymcP5/vubeO01d7i16rh9Grn6KFevPpZBg5awdKltPF1YyGejD/LKG2lMfmiK9/nzS1hjtWpl2a+f7+3MEIBbb/XavJKPA9Q4DmzbBksduMFISeFkfgudb9IktEnw2fbP8F+v7WAfyAeoxn95xp3gMb19AhdwHaN5680iRo+Gq6/G7W7axnNM4x4PE+vj+SOojGHx4YdljvBUq7p7/CIm3wr2Rb+UL4s9Hfjg5KvlUHju+KPNM+mPc1zTLd6JBSXGpjzqtWQJ3LHqDjZ72PSsXNmDv/46nZK8wr0+aYIWd3j88os7/TcHj0pZMMqiBB9xDWBFwQO83yoePov8IdWrAXAT79LHT19jOrkspAtraENRUSrvvvsMf/55Hhs2dCInx3rhFOQVsfIFqz9+5aIc7wM85z2Tkxo1rJjD3/uaaPLWW1DVcndRlYNeYVfjysyZ0KwZdOoUOm+1ao4PG27nSDAvu9U45G0m7RH+8wImkk1d3n3H4+u2xP+yBHdr0rNlFLEob598AgMG+I/wFA4z3Pforn2BJyp++eVdTJlyVcD9ESWEskjESHlrOJL1tPZOzLJbsX66oVwf/p5jmNOmXV7s3NOTPHy7Wz1fSZ6D6mWxPXCCURYl+JJLuIH3aMX6sPtmOh+Yxftcz/lM5CiPyXy7qF+83oXFtGEdRUWpfPzxQyxdeoLXMfbtgwObrG6NiZQI4fnAA96jWC1bBhfIVhYHqc7zPMjJQQbLYsbJHi6XfaI7leCJJ+jGQl5gKOO4il+xnoYT+N2dp0EDOO+8KAjqQYluj6f4P0Y+6fFlfMQR3MGw4k1/EfIA/s1XkZHHw8ux4+Ac/tjo7hatUSWwldb339/Eb7/9O659lT08wgYn2qS80Vzvtd2S9e7/xSVrQUFxi6juVstdXgYNi/cPGPAkzz7rfR/fyltc42dsMcXDcmrzZvfzcPPNZa9LMIyyKEFnlvAeNwV84INxeHoG1zOa0QximUcMi62BJ537kCYFLM870neHa3Dbs3kbyrA6y7uPvgeh/VRFlSdKmJeGihtb04phPZSXuIpPONF+KIqv5++/ew36r/0i8KfVHoLZNQahoMCnGdKJpfT8l8d/2ry5j7dhF64v4bP5iXuDzfovLfv3h84TCI+Xv+P3b7Rf1AGOP5kzQ+aJJls3F7Fyma9iHjHCN+/j/M+rtb+elqx/8sPilvJpH90AwNW4vVVbQbG83zlvcTtn8AslkRnTi9erVIHfOQlFePttmMRZTCQ6H09GWQSjRQsQ4SOudhTAyOUzI40CUj3MEsMZzKuRXkAzSvR/qvp/sU6dGvxgVb2jzD3PA47liDiq8L//le0QdmfTRlpaCSd5u9i44a0ZnHqa/7KvBPHldeutcKQf/XyQquxKO4yi5St9d7ro2pWl4/7iH9v3V2qAeRQ12Red6XhlsZf0sKZrVDsnSMYI4eQlH6D14jneFw9l0bxFCkd3TPUxjnzbj/uso1jldlUsQmvW0xq3d8FZh7oA8Dvubu2JEwd7jW82tq2g/Jnpy8YNxeslHnEGMZpBRGH2PUZZBMf+sr2aj50FMCox0OnCFT2PF0PHCNi4JZVJBVaL4Rbsm+fll62v6JJcfnnwg5WYUpoWbEJYXh789BPk5FhuLRdH2GlbWbpLbFzzApxOzPKcM/MCbiP4diUmR44Y4d+T5/vcQEN2kf3el/5PIAKLFtGJpbzLYB7mKa/dB6lqWe8AbYigq9Bj7DGRa64pW4hDj5fuEQ0sq5u7cTARNQLnC7soytV8RCf+jr2y8LC02/+Z9/hgUaGvZVZvZsP06dZGSVlPPLF4XPQn+ln7J01i5crj+OOPCxnLtZzFJL6x/aVW5RCHsd3Lr1w2bgtNT0cGRfsOsJ2m7Ao0N6mMGGURiKOOCt+1QQllscyekFeZPOvztVdwd8QAOQ2a08F2M/4Ej1pfWoHi9I4f7z/dRQkvnwArOYo5HOeb9/8ehnPOsT5VjjzSsvaKZB91WoCYy2GEA0xBUYQlOHNRfiHuMRHPAf4peHffBZpoOZ1TAfhlbi32UtOxnC4GMJa7eY0fOIcneSTs8gFZvNj6bz780PfTMhz27i1WcJf0slqzr/qxvinmwAHroyIOVKKQj7iWi5gQe2WR7jF35o7bYad7vOqz19zzIDqwlG+wewB2BrD2+uMPfrPH3m7mHSttltsT8bV8RG/+ZC+1ALicz9lOU7I8xj09B709jQA/reU7QB5JjLIIxJNPWjdlODem5+At0ALLDaWglqI4+WSrhfD11wEP0a5DKufxPf/mSxqyK/iXY6hYqH6UxVGs5jg/Yxf1/M1BiFRg7vfeC7zv7LPhzjsjc54S3Oby71SiRefUP9NMrG6u/nzGctqHyG1RSCWest18dGQppzCDc/gpeKuuLJRFoa9ezVM8giK0aewe+/AXJKqW7Y2WN94o/fki9ZKPQzeUaxKroF6TcY9s4VaeS+lkKTMXtt+4r7mYt/EdfXa9H3j8ca/053mg+IPmDCZzUgnz8cq4z9m+mttIweVOKFpu8I2yCEQwu/1ATmCuuMJrM418HuVxjmeW+wvwhBOsWA2B2LqVIbzNl/h6oQS85094DnZ36eKbNyUFLrkk8LlsRjEocD+nv+6vcLnJ44vn1FO9vqSoVAlO97UvjxjXXAP/+Q/9+ax4Dk1A88sSEzA9ZwsHUzBXMc6ygLF5hKc4SFUe5zGG+4nJHjFOO83y8+Ai3I+bef4NHrTEayGTemzx8udZSsowZhH2cSLMYzzGaK7zicFR+cw+7KOG3wl2DB4Mr73GJ1zJq9gBt55+OuS5fuasYu+8RaT43K9VPdzIvPJ/bgOPY/mLjvxNU7ZFxXLNKIuS/Pij9WLv2tU7vYF9M8ydG9hj1wkneDlCq0w+j/MYJ/G7d1PWA5/ujWDuRYqKrEF3z20XgWZt+nWF6c0gPghs/TVxYsjyYTFtGvTu7d7OyYELLvCdxORJly4BXZuM4yquK6Ho1tGKL7CVpEd89Kb+HBZ7Ggns3u31InqPG5lFb37gHNoReJB7HNewntY8xmPFaal+AlAB3sExysr06VZYtgULisfXAOeT1iZ5+EETsTzS4T3W05q11CObmpTB6irSrFsXczPeI1nLdYyhhudAuyps2kQNDtCATP8F77mHj7iGZmylP59A06bF3dMAnHEGAMO4ozjWxyn8Ris22OszOJXpXof8hCuL1zP2eM+POZPJ9GJ2RMYIfVDVpFy6d++uEWP0aNW1a53nt24j7+Xnn937Z8zQb7lA59JdFfQ+XlRQncSZqq++6r88WGVnznRvFxZav9dc43teF5Mn+z1WASnagJ16Dy/77v/uO+/tH38s2/U7cEC1Vy/VvDzfazRypK/MqqrbtqkOHWqlX3qp6q5dqoMG+ch6Ly9pdfYFvmYeSw6VNYs6Woio7t8f+L8qw/IbJ+oL3K9FgfJ88knZrqUnrmOOH+99jl27fPO4+OEHd1qvXn5lzCWteDOPSv7vw9Jwww2hr+G4cf7rWHJ5/33vfK5noSzy+aNqVf/nP+006790eF+cwEw9nwmqoMs4WkH1Uy4P697qxny9gG91I4fr0zykoPrhiSP85z94sNRVBuap+r5TfRKSZYmosgiXhQtV//xT9Zhj3H/ejBnu/TNmBL4pbrrJf3rTplbZpUsDPxSBHuhwXniffx64TCRxHfO887zPUVDge95LL/Uu16OH6rXXqubm6jiu1MG8HV4dQbV///CvTcnliCPCLxNJrrnG/zmys32vq4tOncpW54KC0su7dWvo4ztVFuD++CgoiI6yaN++dNcoN1d1zBjVJk189739tuZRSTfTTA8QQBEFWFzKQkH3UkNHM1DX0Dri95lRFvEgM9P9582e7U4Ppixq1fKfnpNjlXW9TG+/3fd8gW4WpzfklCnBy0QS1zHvuMP7HHl5vuf1VBbB6hzusnKl93aDBuGVL40MkaSw0Gq1+Tv+4MH+0/v2Lds1C4fXX1cdO9Y7LdTxP/rIyvfPP6qTJgXP27Sp6tv2h8KAAWW/xosWle3aBDp/yX2lPK6nsojmfRZIWZgxi2jiaS4arE/eE9vrrA9V7L7J1FTrdvBnlfLaa6GPv3On1cddkjp1oE8f9/Zhh4U+ViQoOZ8jGk75t2yBZct809u1c68PGuTlMDAkTgflb7rJMg+eN8/63yJJSoo1K3jJEujQwfv4gfyY/fKL96B4SbL8WMWVlg8+8DXv3r07eBlXHfr1syzlgrFtG9xixyYZO7Y0ErpfryL+jUTA25ouVADsm6JrvhqUZs49RZQGoyyiieeg4wkePqDCteb45BNn+e66y3+6a4JQ9eqWp1x//u6zs71NcYPF1YgEmZmwY4f3QNxFF1nX5s474T//Kfs5vvjCehE0a2ZFiQnGqFGBY2QccYTlhjw7Gz7/3DrmFA+PwH//7b/cqlUwcqQV87KM4UiD0qmTrxffPUFiNnvK7smXXwZ2yQ/W/xUONWr4uiOpXdsalA9FlNxs+zB0aHAT8RdegPvvtzz8Tp3qNnTxR1YWvPNO8PMNGBB8/8KF1rOXU4oZ9Zuj7CzUX3MjGZaE6IYKxG+/uZuLK1aEblIWFTk/9pw51vFL8uKL7ia+quqsWc6bzmCNv3gSqT7iceOsYxx/vHf611+7j1/abiineT2v7913e+9LS3NWD8//1LXk5jorG2neey/0tdi2TXXCBNWBA333eZabNUt10ya3QUA4nHOONb7kj6uuCvx/tGsX+pkItLi6a53i7xibN1tdxStX+i/jee+fc07oc5TsEnR6z5bY9zvH63y6BS87Y4bqvHnhXQOfS1LOxyyAfsBKrPCqD4bKn9DKYvZs69KLWNu7dvn+8VOmWL///W/05MjMtBTIoUO++664wjp/erpqvXqqu3d774+W9YmLPXvcxw9XWbRq5SuvZ94dO9zrN9/smy8jw/2ftG4dntz5+Zbs+fnhlYskt93mfT2uuCL8Y4waZf3HZeGyy1SPPtr/vuzs0iuEcD4QQuFZ9rnnylTdgLz0knX8Cy8Mbu3Yrp13uYwM3zw7d5a9ziEo18oCSMWKv90aqAwsAjoEK5PQyqKoSPX5562XlidjxlgP9s6d8ZGrJLm5wVs1d92les890Tv/xInWLfrXX4HzFBU5b3mFk7ew0PpCK4MJYlzJylL95RfVO+8Mr2UaSX791Wq9BKLk4LzncvPNqkceqfrUU6o1aqi+9Za73OrVlmHEsmVW3QoKrJZPaSy1tm2znsXvvgu/bFnYvNka/N+1y/qw2LrVf+stM1N13z7vtLlzrWv3xx+q69dHXLRAykKsfYmNiBwPPKaqZ9vbDwGo6rOByvTo0UPnBZihajAYDAb/iMh8VfWZzVteBribgVeoty12mhciMlhE5onIvIxQVgsGg8FgcEx5URb+zId8mkSqOlJVe6hqj4YNo+Om12AwGCoi5UVZbAE8nQM1B3+OfgwGg8EQDcqLspgLtBWRViJSGegPnr6ADQaDwRBNojBdNvKoaoGI3A5MwrKMGqWqS0MUMxgMBkOEKBfKAkBVfwB+iLccBoPBUBEpL91QBoPBYIgjRlkYDAaDISTlYlJeaRCRDGBjyIylowGUiK+YfCR7HZO9frEg2a9hstcP/NfxCFX1mXuQtMoimojIPH8zHJOJZK9jstcvFiT7NUz2+kF4dTTdUAaDwWAIiVEWBoPBYAiJURalY2S8BYgByV7HZK9fLEj2a5js9YMw6mjGLAwGg8EQEtOyMBgMBkNIjLIwGAwGQ0iMsqjgiIg/9+8GgyGJiMRzbpRFCcTiPBFpFG9ZooVdx3tEpLkm6aCViLQRkarxlqM8IyKp9m9SflAk+7Me6efcKAsPRORiYDlwO/C+iHSMr0SRR0QGANOAbsDeZHsRiMjVIrIUeBH4UkTKjbPMREFErhORv4C74i1LtEj2Zz0az7lRFjYiUh+4HhikqucAaUAHe19SvFBF5ETgA+B+VR2gqntdXxzJUEcRuQi4GbhBVf8NVANusveZe90BInI0cCswEThFRFqrqibT9Uv2Zz1az3nS3AClQURqemzmATWAw+ztIqCJiDSJuWARxNWVAKCqvwOzgfb2vgdF5AIRqVFeu6NEpIbH5iJgoKr+aW8PAy4GUNWiGItWbvB8DlR1BTAAeBVYhvXlXe6vX7I/67F4ziusshCRB4G/ROQFEblGVfcBHwFXichOYBPQGXgSOCOOopYaEXkCeFREPJ2C3QKMEZGFQB3gDuBF+4uyXCEi/wGmi8iLInKlqm7A23lka+CPuAhXTvB4Dp4Xkevs5JWqmgV8DbQRkVPsvOXyfZHsz3qsnvMK2Z8rIqcD5wJnAi2Bj0VkkaqOEpFsYIuq3mN/jTwKtAEmx03gMBGRKsC9wEBgAVa/5c8AqrrIjjo4W1Xn2zfYu8ARwIo4iRwWdjfCy1jdTDcCRwJDRWSGqm4VkTRVzcf6clwUR1ETmgDPwQJVXWxnWY7V730zMENVi0QkVVUL4yJwKUjmZz3Wz3m5/FKIAGnAX6q6XlWnAa8DL9j7soBCEalrf4EI1kupPJGP1efcAfgTOE1EWrl2qupwVZ1vr2dg1blePAQtJQeAn1X1clVdCEwBlgDNAWxFAXAM8JuIHCUij9lKxuDG33PwrMf+A8AXwH4ReVJEXsB64ZYnkvlZj+lzXlGVRTWgvoikA6jqc8BhInIB8A/QGKvJ9jLWF8mcuElaCuz+5VWqegD4DOsl2tP+Eike5BKRenYdOwNz4yVvuKhqDvCdR1IB0BXY7koQkRZYD8bjwKfALlXNjKGY5QF/z0ETEbnM3lYgB0vpDgEyVHVtvIQtJUn7rMf6OU9qZSEip5boxwNAVb/Gam6e75H8IvAfVV0JPAZsBfYDJ6jqzBiIWyqC1DHX/t0AzAT6AEfbaWp/gXyG9eXVR1XXxEzoMAhSv30em/WBnaq6ySOtCtZ/vBM4UVXfjK6kiYuIXCsix5RMD/AcvIDVteHiWWAp0EJVX4yqoGUgzDqWu2c9SP1i95yratItQD9gBlYfXS2PdAGq2Ov97Twt7e0WwHCguitvvOtRhjqm2Oup9m8t4A3gKuBa4AI7vX686xGh+p0EjLPXzwZOsR+OJvGuR5yvYResMZtvgC4lrmGw5+AtoKa9nR7vekSpjuXiWQ9Rv5g+50kzwG03uQS4AngHy9b+c8/9al25XBFpjaVtOwD/J9YEpAuADWo16bDzJhRh1FHtOmYBu1V1r4isxnoJZAJ3AmiCdcuUtn5YyqGyiIzAamo/qNa4xXYqNucCb6mqlxtqh8/BPjtvToxlDpey1DFhn3UPgtUvps95UnRDuV4iavXhbQPGAmvsfZeJSHOsL01E5GEsG+STsCxqRgM9gSmqeks85HdCKer4O3C8WBwN3A28qKpHquoPcalEEEpZvxPt4h2BXsAKVT1RVX+LeQUSAFcftQdHY/XLI5bbh34iUsfefgCrf77cPQclkpKqjqWo3x/E6Dkv9/EsbPOwvsBvWC+YbOAGYBBQF8tKphKwQ1VvsfOPU9Vsj2MktDlgWetoD+6lur6kEo0I1O98YKaq7o6D+AmBxzX8FfhcLRPiZ4G1wHlYL5y6QCrwFHA88Fk5fQ6Sso5lrV/Un/N49seVdQH+hTW6fxrWV8NbwFFAU+A5oJudrz5Ws6yLR9lUErivMkJ1rBRv+aNcv7R4y58IS4Br2AKrr34q1pem656fit2X7ZFWXp+DpKljGesXk+e8vHdD9QJGqGU//RiwAcvKYRvwmKr+BcV9dl9haWVXl0eh2lc6wSlLHQviInF4lKV++X6PWPEoeQ03Ag+p6qdYX6NpItJYrS/qP7Csg8r7c5BsdSxL/WLynJcLZVGyH89jex3WyD+quhHL9r6miFyoHgNzIvIIVr/2cjtvwt04yV7HZK9fLAjjGk4AGorISVhmovnAQ/Y1vBSrmyMhr2Gy17E8169cKAvsgU0XHhfoC+CgWN5GwbJ+mY7bg+TJIjINq1vjElXdERtxS0Wy1zHZ6xcLwrmGU7HmDfyFNVdiBdYEtTNcrbUEJdnrWG7rl9CmsyLSA3gA2CYinwOzVLVQRFLUsprJxnJ2NkREJqjqHrG8kLqC3mwAblPVZfGQ3wnJXsdkr18sKOU1rA5UB1DLKeDb8ZLfCclex2SoX0K2LGwzsOewLs5EYAeWq+QW4OUuuSowCUsLjxSRpljOtPLsfJsT9SWT7HVM9vrFgkhdw0Qm2euYVPWLxCh5NBYsU7G69noT4BOghsf+J7AubjcsH0BPYXVfDMee0ZjoS7LXMdnrZ66hqWNFql/CzLMQK8xhB2Cxqk70SD8Zy/f8NqzJdN9imZiNBB5VD18nIlJNVQ/GUu5wSPY6Jnv9YkFFuIbJXsekrV+8tRXQEMvvyQysgB07gX957O8InGavD8KatNXKY39KvOtQ0euY7PUz19DU0dRPE0JZ9AaGemxfC/wRIG9rrEGg5uXh4laUOiZ7/cw1NHU09YuTI0ERGYAVynAOMB9Yb6enYsX9XRKg6FlYg/IuJ2cJGxc42euY7PWLBRXhGiZ7HZO9fp7ETFnYk08OAz7GCpC+FrgJuEtVd4jts0VE2mPP0rXLVcbyKvo8lt/5/6jqnljJHQ7JXsdkr18sqAjXMNnrmOz1C0RMTGfti6dATWCrqvYFbsVyrTuyRPazsCaoICINVDUPq+/vf6p6oaomZJzoZK9jstcvFlSEa5jsdUz2+gUjqi0LEamEZRaWKiI/YAXnKARQ1QIRuRNrkkofVf3VLrYfWC8iTwD/FpFz1Aogv9jPKeJOstcx2esXCyrCNUz2OiZ7/ZwQtZaFiPTB6sOrixWX4Eks/yaniUhPKJ7q/gSW4yxXP9/1WNq4FpblwOZoyVhWkr2OyV6/WFARrmGy1zHZ6+eY0o6Mh1qAk4FrPbaHYwV9vw6Yb6elYPX9jQeOwPKk+BpwbLTkMnU09TPX0NTR1K8U1yGKF7gaUAV3fNirgWft9YXAHfZ6D+DTeF8IU8eKVz9zDU0dTf2cL1HrhlLVg6qaq+6oVGcCGfb6IKC9iEzEmvo+H/yGFExokr2OyV6/WFARrmGy1zHZ6+eUqJvO2n13CjTG8tEOlm3xf4FOwHpV3QqJ53veKclex2SvXyyoCNcw2euY7PULRSxMZ4uwfLjvAjrbGvgRoEhVZ7oubjkn2euY7PWLBRXhGiZ7HZO9fkGJiSNBEemNFQrwD2C0qr4f9ZPGmGSvY7LXLxZUhGuY7HVM9voFI1bKojmWn5RXVDU36ieMA8lex2SvXyyoCNcw2euY7PULRsK4KDcYDAZD4pKQkfIMBoPBkFgYZWEwGAyGkBhlYTAYDIaQGGVhMBgMhpAYZWEwGAyGkBhlYTBEABGpIyK32utNReSLeMtkMEQSYzprMEQAEWkJTFTVTvGWxWCIBnGJwW0wJCHPAW1EZCGwGmivqp1E5DrgYiAVy3/Qy0BlrIlducC5qpolIm2At4CGwEHgJi1nkdQMyY3phjIYIsODwFpV7QoMLbGvE3AV0BN4Gjioqt2AWcAAO89ILFfX3YH7sWImGAwJg2lZGAzRZ5qq7gP2icge4Ds7fQmWQ7oawAnA5x6eravEXkyDITBGWRgM0cfTh1CRx3YR1jOYAuy2WyUGQ0JiuqEMhsiwD6hZmoKquhdYLyKXgRU4R0S6RFI4g6GsGGVhMEQAVc0EfheRv4EXS3GIq4EbRGQRsBS4KJLyGQxlxZjOGgwGgyEkpmVhMBgMhpAYZWEwGAyGkBhlYTAYDIaQGGVhMBgMhpAYZWEwGAyGkBhlYTAYDIaQGGVhMBgMhpD8P3XvvxIZuJ6mAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"#test plot\n",
"ds_all.sel(cloud_layer=1).cloud_base_altitude.plot(color='r',label='cloud_layer = 1')\n",
"ds_all.sel(cloud_layer=2).cloud_base_altitude.plot(color='b',label='cloud_layer = 2')\n",
"ds_all.sel(cloud_layer=3).cloud_base_altitude.plot(color='y',label='cloud_layer = 3')\n",
"\n",
"plt.title('')\n",
"plt.legend()\n",
"plt.show()"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAEiCAYAAAA1YZ/LAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABrVUlEQVR4nO2dd3gUVdfAfyeFQOhNpIMIIh2JgIAKIioWEH0VK9jBF0X0UwQVO/b2ggqiVBt25bU3sLwIGASlKiBVeocQAknO98edze4mu5vdZDe72dzf88wzs3funTl3dmbO3HvPPUdUFYvFYrFYwklCtAWwWCwWS/xhlYvFYrFYwo5VLhaLxWIJO1a5WCwWiyXsWOVisVgslrBjlYvFYrFYwk5StAWIBWrVqqVNmjSJthgWi8VSqli4cOFOVa3ta59VLkCTJk1IT0+PthgWi8VSqhCR9f722W4xi8VisYQdq1wsFovFEnZiRrmIyAkisthj2S8iI0Skhoh8IyKrnHV1jzKjRWS1iPwpImd7pHcSkSXOvnEiItGplcVisZRNYmbMRVX/BDoAiEgi8A/wETAK+E5VnxCRUc7vu0WkFXAZ0BqoB3wrIi1UNQeYANwEzAM+B84BvghFnqNHj7Jp0yYOHz4cjupZLD4pX748DRo0IDk5OdqiWCxhJWaUSz56A2tUdb2I9Ad6OunTgTnA3UB/YKaqZgFrRWQ10FlE1gFVVPUXABGZAVxIiMpl06ZNVK5cmSZNmmAbPpZIoKrs2rWLTZs20bRp02iLY7GElZjpFsvHZcDbznYdVd0C4KyPcdLrAxs9ymxy0uo72/nTQ+Lw4cPUrFnTKhZLxBARatasaVvHlrgk5pSLiJQD+gHvFZbVR5oGSM9/nptEJF1E0nfs2OFPlkJEsFiKRzD32NKl8EVI7W6LJfrEnHIB+gK/qeo25/c2EakL4Ky3O+mbgIYe5RoAm530Bj7SvVDVSaqapqpptWv7nANkscQEEybAgAHRlsJiCY1YVC6X4+4SA5gFDHa2BwOfeKRfJiIpItIUaA4scLrODohIV8dKbJBHmVJPkyZN2LlzZ7TF8GLdunW0adMGgPT0dIYPHw7AnDlzmDt3bl6+iRMnMmPGjLCdd86cOZx//vlhO164+fHHHznppJNISkri/fffL/JxRo6En38Oo2AWSwkQUwP6IpIK9AGGeCQ/AbwrItcDG4BLAFR1mYi8CywHsoFhjqUYwM3ANKACZiDfdiqUEGlpaaSlpQHm5V+pUiW6desGwNChQ6MpWshkZ2eTlFT0R6RRo0ZMmzaNZ555plhyNG5sFoulNBFTykVVDwE186XtwliP+co/FhjrIz0daBM2wUaMgMWLw3Y4ADp0gBde8Ls7IyODSy+9lE2bNpGTk8OYMWMYOHBg3v7MzEwGDBjAgAEDeOaZZ5g7dy61a9cmNzeXFi1aMG/ePGrVqlXguNu2bWPo0KH8/fffAEyYMIFu3brx3HPPMWXKFABuuOEGRowYwbp16+jbty89evRg7ty51K9fn08++YQKFSqwcOFCrrvuOlJTU+nRo0fe8efMmcMzzzzDiy++yMSJE0lMTOSNN95g/PjxfPfdd1SqVIk777yTxYsXM3ToUA4dOkSzZs2YMmUK1atXp2fPnnTp0oXZs2ezd+9eJk+ezKmnnlro5VywYAEjRowgMzOTChUqMHXqVE444QROPfVUxo8fT4cOHQDo3r07EyZMoFmzZtx6660sWbKE7OxsHnzwQfr378+0adP47LPPOHz4MBkZGXz//fdB/Jm+cfmrS0iIxQ4CiyWy2Ls+Rvnyyy+pV68ev//+O0uXLuWcc87J23fw4EEuuOACrrjiCoYMGcJVV13Fm2++CcC3335L+/btfSoWgOHDh3P66afz+++/89tvv9G6dWsWLlzI1KlTmT9/PvPmzePVV19l0aJFAKxatYphw4axbNkyqlWrxgcffADAtddey7hx4/jll198nqdJkyYMHTqU22+/ncWLFxdQEIMGDeLJJ5/kjz/+oG3btjz00EN5+7Kzs1mwYAEvvPCCV3ogWrZsyY8//siiRYt4+OGHueeeewCjKKdNmwbAX3/9RVZWFu3atWPs2LGcccYZ/Prrr8yePZu77rqLjIwMAH755RemT5/uU7GceuqpdOjQocDy7bffBiWnxVJWiKmWS8wSoIURKdq2bcudd97J3Xffzfnnn+/1cu7fvz8jR47kyiuvBOC6666jf//+jBgxgilTpnDttdf6Pe7333+fN+6RmJhI1apV+fnnnxkwYAAVK1YE4KKLLuKnn36iX79+NG3aNO+rv1OnTqxbt459+/axd+9eTj/9dACuvvpqvgjBnCl/+cGDB3PJJZfk7b/ooou8zhfsMQcPHsyqVasQEY4ePQrAJZdcwiOPPMLTTz/NlClTuOaaawD4+uuvmTVrVl6X1eHDh9mwYQMAffr0oUaNGj7P89NPPwVdT4ulLGNbLjFKixYtWLhwIW3btmX06NE8/PDDefu6d+/OF198gaqxsG7YsCF16tTh+++/Z/78+fTt2zekc7mO44uUlJS87cTERLKzs1HViJppu87pOl8wjBkzhl69erF06VL++9//5s0dSU1NpU+fPnzyySe8++67XHHFFYCp8wcffMDixYtZvHgxGzZs4MQTTwTIU7K+sC0XiyU4rHKJUTZv3kxqaipXXXUVd955J7/99lvevocffpiaNWvy73//Oy/thhtu4KqrruLSSy8lMTHR73F79+7NhAkTAMjJyWH//v2cdtppfPzxxxw6dIiMjAw++uijgOMc1apVy2vxAHldcvmpXLkyBw4cKJBetWpVqlevntcKeP311/NaMUVl37591K9v5sq6usFc3HDDDQwfPpyTTz45r0Vy9tlnM378+DzF6uoGLIyffvopTyF5LmeeeWax5LdY4g2rXGKUJUuW0LlzZzp06MDYsWO57777vPa/8MILHD58mJEjRwLQr18/Dh48GLBLDOA///kPs2fPpm3btnTq1Illy5Zx0kkncc0119C5c2e6dOnCDTfcQMeOHQMeZ+rUqQwbNoxTTjmFChUq+MxzwQUX8NFHH9GhQ4cC3UnTp0/nrrvuol27dixevJj777+/sEsSkJEjRzJ69Gi6d+9OTk6O175OnTpRpUoVr2szZswYjh49Srt27WjTpg1jxowp1vl98euvv9KgQQPee+89hgwZQuvWrcN+DoslVpFAXSJlhbS0NM0fLGzFihV53SSlgfT0dG6//XY7JuCDzZs307NnT1auXBmTllul7V6zWFyIyEJVTfO1L/aeNEvIPPHEE1x88cU8/vjj0RYl5pgxYwZdunRh7NixMalYLJZ4xbZciI+WS37Gjh3Le+95u2e75JJLuPfee6MkUdH56quvuPvuu73SmjZtykcffRQlicJLab/XLGWXQC0Xq1yIT+ViKT3Ewr22aZNxMdOnD9SsWXh+iwVst5jFYimEhQvh8sth9epoS2KJF+wkSovFwhlnwIoV1oeZJXxY5WKxWKhcGVq2jLYUlnjCdotZLBaLJexY5VLKsPFc3MR6PJfnnnuOVq1a0a5dO3r37s369eujLZLFUmLYbjFLWLHxXNx07NiR9PR0UlNTmTBhAiNHjuSdd94Jo4QWS+xiWy5BMGIE9OwZ3mXEiMDnzMjI4LzzzqN9+/a0adOmwEspMzOTc845h1deeYXmzZuzY8cOAHJzczn++OP9tm62bdvGgAEDaN++Pe3bt89rWTz33HO0adOGNm3a8ILjBXrdunWceOKJ3HjjjbRu3ZqzzjqLzMxMABYuXEj79u055ZRTeOmll/KO72pNrFu3jokTJ/L888/nuX958MEH87wQL168mK5du9KuXTsGDBjAnj17AOjZsyd33303nTt3pkWLFkF7HFiwYAHdunWjY8eOdOvWjT///BMwjiYXe8Ti6d69O3/88QcZGRlcd911nHzyyXTs2JFPPjHBSqdNm8Yll1zCBRdcwFlnnRXUuf3Rq1cvUlNTAejatSubNm0q1vEsltKEVS4xio3nEl/xXCZPnhyyt2qLpTRju8WCIArhXGw8F+Innssbb7xBeno6P/zwQ8hlLZbSim25xCg2nkt8xHP59ttvGTt2LLNmzfK6lqHwwAMgArt3F6m4xRIVrHKJUWw8l9CIxXguixYtYsiQIcyaNYtjjjmmyHV7/lkTQuCD/9gxG0vpIaaUi4hUE5H3RWSliKwQkVNEpIaIfCMiq5x1dY/8o0VktYj8KSJne6R3EpElzr5xEsnP7Ahh47mERizGc7nrrrs4ePAgl1xyCR06dKBfv35FOs6dl28G4OAB6wfQUopQ1ZhZgOnADc52OaAa8BQwykkbBTzpbLcCfgdSgKbAGiDR2bcAOAUQ4Augb6DzdurUSfOzfPnyAmmxzK+//qo9evSIthiqqrp/v+rChaoZGdGWxPDPP/9o8+bNNScnJ9qi+KS03WsWiwsgXf28V2Om5SIiVYDTgMkAqnpEVfcC/TFKB2d9obPdH5ipqlmquhZYDXQWkbpAFVX9xan8DI8ycUmsxXPJzITc3GhLYbDxXCyW6BBL1mLHATuAqSLSHlgI3AbUUdUtAKq6RURcndf1gXke5Tc5aUed7fzpXojITcBNAI0aNQpvTUqYUaNGMWrUKK+0aMZzcdkHlCsXnuMVJ57LoEGDGDRoUHgEsVgsQRNLyiUJOAm4VVXni8h/MN1g/vA1jqIB0r0TVCcBk8DEcwld3Njm3nvvLZWBwXxx9tlnc/bZZxee0WKxxAyx1E+wCdikqvOd3+9jlM02p6sLZ73dI39Dj/INgM1OegMf6ZYSwtVyKX1mFBaLJVwUqlxEJFVExojIq87v5iISdm+BqroV2CgiJzhJvYHlwCxgsJM2GPjE2Z4FXCYiKSLSFGgOLHC60A6ISFfHSmyQRxlLCWCVi8ViCaZbbCpm/OMU5/cm4D3g0wjIcyvwpoiUA/4GrsUowHdF5HpgA3AJgKouE5F3MQooGximqi4b1JuBaUAFjLVY8NPHLcXGKheLxRKMcmmmqgNF5HIAVc2M1LwRVV0M+IrH3NtP/rHAWB/p6UCbsApnCZoAE/4tFksZIZgxlyMiUgFnUFxEmgFZEZXK4pfSEM9lzJjhiMAPP5TteC4TJ06kbdu2dOjQgR49erB8+fJoi2SxlBjBtFweAL4EGorIm0B34JpICmUpvaSlpXH7re3JyoHvv/mWKtWrldl4LldccUVenWfNmsUdd9zBl19+GS7xLJaYptAnR1W/EZHfgK4YM9/bVDW2Pp0jzKpVIzh4cHFYj1mpUgeaN3/B7/6MjAwuvfRSNm3aRE5ODmPGjGHgwIF5+zMzMxkwYAADBgzgmWeeYe7cudSuXZvc3FxatGjBvHnzfLrd37ZtG0OHDuXvv/8GYMKECXTr1o3nnnuOKVOmAMYX14gRI1i3bh19+/alR48ezJ07l/r16/PJJ59QoUIFFi5cyHXXXUdqaio9evTIO/6cOXMY++AT3HrHRCa88irlUpJ44403GD9+PN999x2VKlXizjvvZPHixQwdOpRDhw7RrFkzpkyZQvXq1enZsyddunRh9uzZ7N27l8mTJwf0c+ZiwYIFjBgxgszMTCpUqMDUqVM54YQTOPXUUxk/fnyeZ+fu3bszYcIEmjVrxq233sqSJUvIzs7mwQcfpH///kybNo3PPvuMw4cPk5GR4dPtfrBUqVIlbzsjIyOizj4tlljDb7eYiJzkWoDGwBaMSW8jJ80SQUpzPJeUSkm0blGPwVffVObjubz00ks0a9aMkSNHMm7cuKDqYrHEA4FaLs866/KYQfbfMS2XdsB8oIefcnFHoBZGpCjt8VyatSxHpaq+vTOXpXguw4YNY9iwYbz11ls8+uijTJ8+vfBCFksc4Lfloqq9VLUXsB44SVXTVLUT0BHjx8sSQWw8l/iI5+Lisssu4+OPPw6qLr7IyIBnnwWPyAsWS0wTjLVYS1Vd4vqhqkuBDhGTyALYeC6hEovxXFatWpW3/dlnn9G8efOiVA2Ag1sOcOed8NMT/yvyMSyWkiQY5bJCRF4TkZ4icrozU39FpAUr69h4LqERi/FcXnzxRVq3bk2HDh147rnnitUlVrtOAvsvH8LNV+wLo4QWS+SQQF0iACJSHjPj/TQn6UdggqoejrBsJUZaWpqmp6d7pa1YsSKvm6Q0kJ6ezu23316kGO/xzubNm+nZsycrV66MSbf7pe1es1hciMhCVfU18b3wlouqHlbV51V1gLM8H0+KJR6ItXgusUTcxHP54AMYOjR2AuVYLIUQTMtlLb5d1h8XKaFKmnhoueQnmvFcwk1x4rmUBoK51xadM5rXv6rNiPSradSpdglJZrEEJlDLJZjpx54Fy2McR/q207TEDDaeS3zx0zEX8yoncOXmAzTqFG1pLJbCCaZbbJfH8o+qvgCcEXnRLBaLizveSuOO+yvT6YJ60RbFYgmKQlsu+WbjJ2BaMpUjJpHFYinADTeMRCQVeDDaolgsQRFMt9izHtvZwFrg0siIY7FYfFG79iYOHqwEhw9D+fLRFsdiKZRglMv1qvq3Z4IT+dFisZQQjz76FgDPVH4IHnggytJYLIUTjG3m+0GmWUqA0hDPZfjw4YDxkFyW47m4eP/99xER8lskFom9e4t/DIulBPDbchGRlkBroKqIXOSxqwrGasxiKUBaWhrHHZfGwYPm5V+pUqUyG88F4MCBA4wbN44uXbqER6h83gcsllgl0JNzAnA+UA24wCP9AHBjBGWKOUZ8OYLFWxeH9Zgdju3AC+e84Hd/aY7nMmbMMzz++ItMnDiRxMTEMhvPBYybmZEjR+Z5Xy42QTrytFiiTSCvyJ+o6rXA+ap6rccyXFXn+itnCQ/hiOdy5Mh2Dh/e4HXckojnUrkydOnShKFDh5bpeC6LFi1i48aN4e26sy0XSykhULfYSFV9CrhCRC7Pv19Vh4dbGBFZh2kZ5QDZqpomIjWAd4AmwDrgUlXd4+QfDVzv5B+uql856Z2AaUAF4HNM9MzArggCEKiFESnCEc8lNzeLnJxDXsctiXguCQmQnOy/bmUhnktubi633357AQ/NxcYqF0spIdCAvsvzcTqw0McSKXqpagcPlwKjgO9UtTnwnfMbEWkFXIYZFzoHeFlEXL7mJwA3Ac2d5RxKGeGI51K+fEMqVmxZ6LlsPJfwx3M5cOAAS5cupWfPnjRp0oR58+bRr1+/Yg/qj/0ttFg9oaIKhw4Vns9iKYxA3WL/dTYPqep0zwUoyduvP+DyVT4duNAjfaaqZqnqWkwAs84iUheooqq/OK2VGR5lSg02nktoxFo8l6pVq7Jz507WrVvHunXr6Nq1K7NmzSItzacbpqBZuLNRscoXxt65y6lYEd5+cVdEz2OJf4IxRR4dZFo4UOBrEVkoIjc5aXVUdQuAsz7GSa8PbPQou8lJq+9s50/3QkRuEpF0EUnfsWNHmKtRfGw8l9CIxXgukeDDHs9H9PjlexjHZStf+zmi57GUAVTV5wL0BcYD24BxHss0YIG/csVZgHrO+hjgd0wMmb358uxx1i8BV3mkTwYuBk4GvvVIPxX4b6DzdurUSfOzfPnyAmmxzK+//qo9evSIthgxyT///KPNmzfXnJycaIvik2DuNdNhpaoXXhhZYUAzqKC5Q4ZG9jyWuABIVz/v1UCmyJsxYyv98B5jOQDcXiyN5gdV3eyst4vIR0BnYJuI1FXVLU6X13Yn+yagoUfxBo7Mm5zt/OlxyxNPPMGECRP8dk+VZWbMmMG9997Lc889V7rjubjYsiWyx587l9TcXOjePbLnscQ9wcRzSVLViBvXi0hFIEFVDzjb3wAPA72BXar6hIiMAmqo6kgRaQ28hVFA9TCD/c1VNUdEfgVuBeZjrMXGq+rn/s5t47lEgKwsYzIWhhe6jecCLvsJvaAfzJoVETnWr4cPP4Qzz4S2bSNyCkucUaR4LiKyBCdIWD7LIAFUVduFU0igDvCRc64k4C1V/dJRFO+KyPXABkw8GVR1mYi8CyzHONQcpqquzvabcZsif+EsZYqox3NZsQKqVYMmTYp9KBvPxYMImiL/9RfccQdMmmSVi6X4BOoWK1GnTWqcY7b3kb4L03rxVWYsMNZHejrQJtwyWkIgO9vOJo8En39uFEwAi8Ci0rOncV3mxz7DYgmJQKbI630tmDGMkSUnoqVUkppqxqAt4SdIs+lQSU6GqlWhXLmIHN5SxgiqQ1xEOojIU84M+keBlRGVylL6EbHKJVI4E0QjduytWyN3fEuZwa9yEZEWInK/iKwAXsTMKRFV7aWq40tMQovF4k0kuxvnzIG6dWH+/Midw1ImCNRyWYkZ67hAVXs4CsU6NooypSaeiwhz5s0r0/Fcpk2bRu3atfNcxLz22mvhOXBJ+BeLUutl716YOBFWr47K6S1hJNCA/sUY312zReRLYCbGUsxi8UtaWhppzZrBmjXMWbCAStu3l+l4LgMHDuTFF18Mk0QOkWy51K1r1lFykLnyjyPcfHM5Zs44wvHH28Gf0ozfJ0dVP8KYBlfE+Oa6HagjIhOAj1T165IRMfqMGDGCxYsXh/WYHTp04IUXXvC7PxzxXLKza3HwIBx/vPu4JRHP5ZkxY3jxrruYOHMmiSkpZTqeS0SI5IvfZYUWJeWyfdrnwIXUWL8ICFOANUtUKHRAX1UzVPVNVT0fYym2GMczsSVyhCOey9GjZi6jJyURzwWgSb16DL3oIm4fOJDFixaVyXguAB988AHt2rXjX//6Fxs3bvSZJ2Qi2XKJsnI5fVBj5g2dRu+7TorK+S3hI6Q2v6ruBl5xljJDoBZGpChuPJfsbDiy5yB1q+QAVfPKlkQ8Fy9yciA312teRlmI5wLGcefll19OSkoKEydOZPDgweFpCcWxcqlyekcOS0f2ZkCNlMLzW2KXOHC2FJ+EI55L5tEkso8Ubg4cyAVQWOK5hGiSHA/xXABq1qyZV5cbb7yRhQvDFAbpn3/CcxxfRFm5HD5sJnOee25UTm8JI1a5xCjFjeeSlARtOpXnmBbVvI5bovFcUlM5cOhQAeVSFuK5AGzxcDI5a9as8PmqS00Nz3F8EWXl4opgWr58VE5vCSNWucQocRHP5dRT+WjOHDqkpZXJeC7jxo2jdevWtG/fnnHjxoUn5HG7dnD99cU/jj+irFySkqBiRWjePCqnt4QRv16RReQAjuNKX6hqlUgJVdLEg1fk9PR0br/99pDGBCLGb7+ZcZaEBGjVClJS3G59o8DmzZvp2bMnK1eujEm3+yF5RW7XHn7/PXLCbN4M9eubySZDhkTuPAFo2BDOOgsmTw697FuP3kJmwhGuv2dS+AWzFKBIXpFVtbJT+GFgK/A6Zp7LlUDlCMhpKSIxF88lN9esExKi3r8Rd/FcXNc2Urj6pYI0pIgECbt3kLvmAHBcyGXr9XjJ2bLKJdoEYy12tqp6GpxPEJH5wFMRkskSIqNGjWLUKG/r8KjGc6lVC3buDEssFyhePJdBgwYxaNCgsMgRE0RaudSsCSeeCO0LOCgvMcYcGk3DnCbAfYVl9cuRzK2Uq3Bs2GSyhE4wyiVHRK7EzNBX4HLKiBuYkK2iYoioxnNp0sS8BJ15I8UlnuO5FBasrwCRblEkJMDy5ZE9RyHc0PE3qL698Iw+GDduHMOHDydXIqyELYUSzKflFcClwDZnucRJi2vKly/Prl27Qn/4LZYgUVV27dpF+VC6Dg8dipxAsUJKSsHZv0GSlWWMS9xxAy3RotCWi6quA/pHXpTYokGDBmzatIkdO3ZEW5TSyc6dpuVSTN9c8U758uVp0KBBtMWIKe7adBv1UnZyexHKVqhwEICcnMzwCmUJmUKffBGZig+rMVW9LiISxQjJyck0bdo02mKUXj7+GN54A95/P9qSxBfhMGeOcd7bdxagRVIuzZr9AcCCmV9yxg0twiqXJTSC+az81GO7PDAA2BwZcSxh59VX4cwzoaQV5YUXmsUSXnbvjrYEEWfR+hpUqlS0shMnPsU//zTjtGYXckZ4xbKEiN95Ln4LiCQA36pq3Px3vua5xA0icOONMMltmvnQQ2bM9p13oiiXJSTy5rnsPwCV7UwAf7iu008/gYezbkuECDTPpSi2os2BRsUTyTcikigii0TkU+d3DRH5RkRWOevqHnlHi8hqEflTRM72SO8kIkucfeOktJp7hYvatQuExf3oI7NYSiFWsVhKCYUqFxE5ICL7XWvgv8DdhZUrIrcBKzx+jwK+U9XmwHfOb0SkFSaQWWvgHOBlEXG53Z0A3IRRgs2d/WWXatXA8RDs4qyz7Di7Jb6xRp7RJ5h4LpVVtYrHuoWqfhBuQUSkAXAe4BkLtj8w3dmejgla5kqfqapZqroWWA10FpG6QBVV/UVNf98MjzJlk+TkAi7aRSI/F89isZRtguoWE5F+IvKMs0QqaPkLwEjA87VXR1W3ADjrY5z0+oBn5KVNTlp9Zzt/egFE5CYRSReR9Hg2N16b25g7F13JkiXuNBH7ZWexWCJLMN1iT2C6q5Y7y20i8ng4hXAU1nZVDTbgha9xFA2QXjBRdZKqpqlqWu3atYM8belja+4xTFx3Nk5UY8BMwrbKxWKxRJJget7PBTqoai6AiEwHFgGjwyhHd6CfiJyLMXeuIiJvANtEpK6qbnG6vFw+ITYBDT3KN8CYR29ytvOnl1lOqbaCgy06QX+3Sw/bLWaJd+zHU/QJ1lqsmsd2VX+ZioqqjlbVBqraBDNQ/72qXgXMAgY72QYDnzjbs4DLRCRFRJpiBu4XOF1nB0Skq2MlNsijTNlk2zYzqO+BbblYLJZIE0zL5XFgkYjMxnQ7nUZ4Wy2BeAJ4V0SuBzZg/JqhqstE5F1MN102MEzdzoRuBqYBFYAvnKXs0qIF7N/vlST/bCI317ocKU3sevFtEg4fAiIYKMwHh44c4Kc1b9DymFNoXLNDiZ7bUroJahKl0yV1Mka5zFfVrZEWrCSJ60mUn35qTJEHDMhLqlNhH9sPV2Xnsm3UbFUnisJZgqZvXzM7f/78Ej3tiq3/o9UrPRjTvjkPX/hXiZ67KLhmtc2ZA8WMnG0JgiIFCxORk/Iluayw6olIPVX9LX8ZSwxyfkHjvoO5JgZ7Sq517ldqcEX2LGHqVKzF023hhOrZhWe2WDwI1C32bIB9CtZ1T2nlict/Z/j0NFITDvvNs3nza2zY8ARduvyF8fhjiSr79kVFuVRKqUlaDTi+2R0lfm5L6SZQmONeJSmIpeS4td8Gbp1+Mhxd7DfPX3/dCEBubhaJiRVKSDKLT266yXSHnZS/M8FiiV0CdYtdhRmTeT1f+o1Ahqq+5afcrCDOu1tVrwlFUEsYccVJD+Bht1q1M9i79/sSEsgSkFdfNWs7iGApRQTqFvs/jGVYft4BZgM+lQtwInBDgOMK8FJQ0lkiS4Bulho1zrLKJUJs325sLOr79B0RgOOOi4g88Yg1tY8+gZRLoqoeyJ+oqvtFJDlAuXtV9YdAJxWRh4IV0BIBqjvOpY8cia4cZZSnn4Zx40zDsWLFEApuL1pc+eJh39KWohFohDBZRArc+iJSGSjnr5CqvlvYSYPJY4kgrm6xfN6SLSXDkSNmOezfnsI3UfSBV9YjV1hCJ5BymQy8LyJNXAnO9kxnX0BEJE1EPhKR30TkDyfGyh/FFdgSBqxyiSrHH2/WIXfd2FgullJEIGuxZ0TkIPCDiFTCtI8zgCdUdUIQx34TuAtYgrenY0u0scolqhS5EfD00/DUU2GVJSbZvt0EHKpRo8iHsGMu0Seg4byqTlTVxkBjoKmqNg5SsQDsUNVZqrpWVde7lmJLbAmJQw9ez7wPU9i508PFWjmnV3PbtiCOYJ/SSGFfgH4YNQpOOCHaUliKSVDxCFX1YBGO/YCIvIaJIJnlcawPi3AsSxGZd/Q02LqU5ORj3ImJTtDOCoHmr9g+9khR5JbLnj1hlSMmUYWpU6MthSUMRDLY7bVASyAZd7eYAla5lCC3fzqYf/4ZzM5/eyS6Wi720zkqVKr0KRMmPEROztdA9eAL5vNuHZesWFF4niCwt3b0iaQ/ifZOMK7Bqnqts1wXwfNZfNC1K2TmdyHmarnYoC5RoUKFX2nZMp2srLWFZ960qfA88YRjbv0P9Tj9dPWKoGopXQQb5ribiFwhIoNcSxDF5olIq2LKZykme/bAoUPw/PMeia7Jk1a5RIXDh11OZIO4/luj7YC8hJsAnTsDMI+u/PijcN55JXt6S/gotFtMRF4HmgGLAVfMFAVmFFK0BzBYRNZixlwEUFVtV2RpLSGTahwgU7euR6JVLlHGtBzdIYgCEHXl4qKExuBSU+Hcc+n3+SzeeSuH5i0TS+a8lrATzJhLGtBKgwn84s05RZDHEmYaNjS65LLLPBJdyiUniJebJeysW3cKTz/9M6+/HkTD/sILIy5PzFG5Mslkc+m/ciG5aMrFjrlEn2C6xZYCxwZ7QBH5DcDT/Di/KbIrjyXyJCaaBopXIyWkMRf7lIab8eOrs3Rpd159NYhJkWXxA+Cdd8z6o4/ggw+iK4ulyATTcqkFLBeRBXibFPfzk//EQmbiC1A1eBEtxSHJ+Ydzcjz8VAbVLWZNkSOFy1gvKNdud94JzzwTUXkixsKF0KxZ6FZuJ5wAf/4JAwea37YZUioJRrk8GOIxWwaRpwx+jkUHT+Ximphvx1yiS0jKpTT79EpzDBdCVQ7XXAOjRxf5tN26zULkR1Sftj7Rokih3WKOh+OVQGVnWRHI67G/7rB8SwH7ShEpLyILROR3EVnm8pwsIjVE5BsRWeWsq3uUGS0iq0XkTxE52yO9k+PLbLWIjJMyfIe5lEu2Z5Raq1yiikvJ//NPEJnLmiky5CnUlZzANo4pJHNB+vR5nYSEZzl6dFe4JbOEQKHKRUQuBRYAlwCXAvNF5F8RkCULOENV2wMdgHNEpCswCvhOVZtjZvuPcuRqBVwGtMYYD7wsIq7RvwnATUBzZymzxgWuSd1eHnjtgH5UcSn8oNztV6li1v/7X8TkCUwxuqR69DDr774LrZyjXG7kVc7hy5BP+9tvZwKQnb035LKW8BHMgP69wMnOZMhBQGdgTLgFUYPLzUyysyjQH5jupE8HLnS2+wMzVTVLVdcCq4HOIlIXqKKqvzgWbjM8ypQ5GjY0ay8flXYSZVRJSTHroHuL6tSBbt0iJk9wFKHxv2WLWYfqzdn5+ElJTWIxHUO+TVNT9wOwYEHz0ApawkowyiVBVT2jFO0KslzIiEiiiCwGtgPfqOp8oI6qbgFw1q52cn1go0fxTU5afWc7f3qZxGeHoO0Wiyqu/yQo5ZKd7f4YKEVs3r2N/7v4CJ+3auRuqgWLc4ES1fTlDh4cWvF9+2o5WymhFbSElWCUxJci8pWIXCMi1wCfAZ9HQhhVzVHVDkADTCukTYDsvl6bGiDdu7DITSKSLiLpO6IYhCkqhKBcQp/eZCmMkJRLTk7oL+cY4I1PRvNc6ka+H77Tw5IkSJwLdGzCNq688jH+/ntDSMWXLevG2rWteeHJH0M7ryWsFHrXqupdInIx0B3z4p6kqh9FUihV3SsiczBjJdtEpK6qbnG6vFytqE1AQ49iDYDNTnoDH+n5zzEJmASQlpZWtt6gQY25lFkbiIhTFlouqVkNmX4yJG6rEnph5wI9W+VBlt6wDLgX1WzcQ6qB2bjxBK67bmno57WElaC6t1T1A1W9Q1Vvj5RiEZHaIlLN2a4AnImxUpsFuBrGgwFXYJJZwGUikiIiTTED9wucrrMDItLVsRIb5FHGAubhFbHdYlEiJNvFUtpyOaZGLxqlQkJGLWge4tiH8/FTXXfnJWVn7wtZBsdNmSVK+FUuIvKzsz4gIvs9lgMisj8CstQFZjsTMH/FjLl8CjwB9BGRVUAf5zequgx4F1gOfAkMU7ezppuB1zCD/GuALyIgb6miwFdyQoJVLqWBUtpyEXFuuJo1oXz5UAsDkJCdzdNPvwbA9u1vhyzDtdeGXMQSRgKFOe7hrEskcLeq/gF09JG+C+jtp8xYYKyP9HQg0HiNxSqXqBFSt9h770VUlsIo7pibahG6V10XKDub449fBMCqVbdQv/6wIh3GEh2CmefyejBpltjE7wOWkGDnuUSJoJXLqlURlyV4SvBN7Vwgyc1hxYouAMye/XLIh7G2KNElmDGX1p4/RCQJ6BQZcSwlhsujpaXECanlUmopRuU8DE6+++5y+vY9yNKlQ8MjlqXECDTmMlpEDgDtPMdbgG3YAfLST9DdYnH9BowKQSsXlxOyE0+MqDwxh+sCHT1Kbm4Shw9XxFovlj78KhdVfdwZb3laVas4S2VVramqRfcqZ4kNClEuZdgdW+zg+n9GjoyuHCWN697z8OwpEu8tvfgjUMvF5d34PRE5Kf9SQvJZwoS1Fosdgm65uDIkRMQhRolQrAF9D/btM5dBJDxDhW+/bSykf/ml+Mey+CaQAf3/ATcCz/rYp8AZEZHIElbsgH7sEbRycSn/Uqhc8kyRi1a4QNK337q3d++G2rWLfngwIWbq1nX7BbWEn0DdYjc6614+FqtYSjt2QD9qlC7lUty+qCK0XPY5EyavvhqAvn2nMG3aidx9917AtDqCIdD1rVcPfvoJZs8OXTxLcPhtuYjIRYEKquqH4RfHUmLYbrGoU6hyccVJiIH/qUTH4OrWNev774fXYe/e2vz9dzuuuy6JJ580QSp9snIl57KGL+iLFmII6/IWviE0t2WWEAjULXaBsz4G6AZ87/zuBcwBrHIpzVjlEjVCfk97RXorLYShW6xVK+AIv/xyAb/8cgF33gkpKcqP3x4FyhUsd+QIn3NeUKeoUcPc/tZuJXIE6ha7VlWvxdwlrVT1YlW9mHzzXiyllKDHXKyJTrgJulvMFYSnRo2IyhNJijSg7+oG9ApCBP/5D7Qvt4Klf5XzHcbz2GNDOo1VLJElmM7cJq54Kg7bgBYRkscSIQq8yAodc7FPXqQJWrmE6rK+lPPHxuo8xV3k5Hs9jRkDE06bSZMmy/j8iW8KFiznozVjiRrBuFudIyJfAW9jPmMvA+wwWCkhoLWY7RaLCiG3XMqYcnl/QUMe4Sn6UFCBNH/iekb972L+PloOuMZ7Z3IyDdlAlToVWLatmOZklmJTaMtFVW8BXgFcse0nqeqtEZbLEmmscokaQSsX11hLKXS5XxxT5B4nGlf7h0j1Sp8xAyq3aczmzc1o0+YX7rlnsnfB5GQ20ogWe+YDdtJltAnqrnUsw+wAfjxh57lEjdLVcil5U+QKKeaj5zDervq7djXr5OQsAKpU+Ri43p0hOZmB5T6kYbdGxuTIElWC8Yp8kYisEpF9EY7nYilJ7DyXqBH0QHJMKBcXJTcGV6G8UWiZVPBKb9LErBMTs8nNFRYt+q93QRFmZl3Ej4fSAMjIiLSklkAEM6D/FNBPVat6+Bez81pLGdb9S+wRdLdYTCiXUCl6i6fxMZn8h+G0Ynle2qWXui/DFzuOMOAXJTNhu8/yaUa3sHp1kUWwhIFglMs2VV0RcUksEaH4A/q24zrchNwtVgrHXFwUxRS5dvVshjOe41jrc3+VIzU5vWYCe3b4jnA5ZIhZN20a8qktYSQY5ZIuIu+IyOVOF9lFhc3et5QCCh1zMS+FJUv6lYw8ZYjS2S0WGsWaQ1KIu5u6WU24tVki//ztuwPFNd2lconE0LX4I5hPoirAIeAsjzTFDvCXboJsuVStemoJCFM2KbTlcsUVZl0KlUux8KGZPJNUExDRPBdkQRS3RIFClYszS98SbwQ5oN+o0V0lIEzZIphuMVXIIoUksklKTCwZwcJIsbwiF9Jyyc1NQCSXRo2Kfop44733YMsWGD482pK4CcZarIGIfCQi20Vkm4h8ICINwi2IiDQUkdkiskJElonIbU56DRH5xrFY+0ZEqnuUGS0iq0XkTxE52yO9k4gscfaNExv5qiB2QD9qBKtcKnCYsdwLlSqVjGBhZPcWYy6shw6HXtiHcsnfcklMjE/lsmP5DpbPWk3W4dCU8xNPwG23RUioIhLMmMtUYBZQD6gP/NdJCzfZwP+p6olAV2CYiLQCRgHfqWpz4DvnN86+yzC+zs4BXhYR1yfeBOAmoLmznBMBeSPGvEe/5c7ei8J6zFCtxX79Naynt3gQrHIBSCAXKlaMvFD+JSlSqfLJp/PFF9dwaEERPqUL+RZ0GQloHM6SnDTsd1r3P551f4f24Xf22bHXexqMcqmtqlNVNdtZpgFh962gqltU9Tdn+wCwAqPM+gPTnWzTgQud7f7ATFXNUtW1wGqgs4jUBaqo6i9q7r4ZHmUiwmOPhdDP+8wzJrNfv+Ew4blDPPt9x7DIVtRgYa6YGXaeZfgJ5l7JC+VCLpT3bRVVsoTW+K93fFWeemoqLa/+V+inKqRbTNXsz82NP+UyYERj3hkxl7r1QrveIrHXERGMctkpIleJSKKzXAXsiqRQItIE6AjMB+q4HGc662OcbPWBjR7FNjlp9Z3t/On5z3GTiKSLSPqOHTuKJe+zT5s3sEfIb5/Mmr6HZ+9yfIC2bOk3X3b9JjRjdd7n64oVEXBlUciYy7Jl3Zg8+RGOHk0J84ktwbRcXH+NoKVyhDpoc2tfBDHm4mwFzFcaGzat+jfn0ue7UaVaaAHi1qx5hcsuGxshqYpGMDW4DrgU2ApsAf7lpEUEEakEfACMUNVAngB8PXEaIN07QXWSqqapalrtYsZMvbbe11TkIOXkaMB819+czJ0+o0Z7k0sCieRAbi5z5hzhzDPX8NprYXaKUEi32IoVXXjjjfsQiYWv5vgi5G6xUkixlEuh3WKBlUsp1MXF5vjjf6Rr18+iLYYXwViLbQBKZLKDiCRjFMubHpEut4lIXVXd4nR5uablbgIaehRvAGx20hv4SI8Y3+5oRw6JkJkZsONzZ2YlbmF8ocebubSN2XjsEdbV6subb57MvHmv4eVHqbgEOaBfGr/+SgvBtFzKpHIpdEDfNeZSOq9NJBg79k0AbrklyoJ44LflIiJPichQH+m3i8iT4RbEseiaDKxQ1ec8ds0CBjvbg4FPPNIvE5EUEWmKGbhf4HSdHRCRrs4xB3mUiQint97F6fzgDkvrh5lnTGIMjwBQm+2IwMaN3nkmezh63Xj/JI7MXstjj81g27bTwyu0dVwZNQK9eHfv/opt295yK5drrykxucJJJCdRurvF7JdPLBPoXzwfmOQj/T8QZCzR0OgOXA2cISKLneVc4Amgj4isAvo4v1HVZcC7wHLgS2CYqrreljcDr2EG+dcAX0RA3jz+c3U6X9K3UOUy8LhfOYYdZFGOnY5NxPTp3nkWLHBvN2IjOzPq8s03V/PCC8cXS8bQg4X5KWeJKJs3v8q6dQ+6x1xat4quQPlYseJq1q9/LOj8kewWsy0X2LwZvvvO/TuWntdA3WKqPv49Vc2NxLwRVf0Z/yYpvf2UGQsUGMVS1XSgTfikC8zRckfIrQkp+4MbF/H09tqzp/e+wYNhkodKr1qpeA9QQGuxo4HHiCC2btZ4IdDTc8IJr6GaTWam+V3IR3zEyW/ue/U1b5CRUZEVS+8JWC6S3WKulktZVi76xpt8c/V0NjwwhRsfco8CaAzZfwRSLodEpLmqrvJMFJHmQGZkxSpdrK3yLjsmQffCWgLOv+5SLhMmQI8e3lk8h2wSyKFCpC51VlbBPjkfWOUSfgK9eJOTqwFud/HRVi5ujNC7GldiT2ZW4bkjaC3mkiW3kOctnu/dByYcyyN8TdMp3h+IsVTnQP/i/cAXInKNiLR1lmuBz5x9Fget4JjrOrbIlSvDww/7yOg8NK4gSL6mL3g6wM0lkevfzXM8wHnnweOPh0Vk02qpU6fQbLF0s8YLIZkix8hXqItK7SpQsUtyofeFy2PN//4X+jkyDyn/4j3e5ZK8NF8tF3/zXGLtmkWC9CQTOW3DZm8Dolh6Xv0qF1X9AjP5sBcwzVl6Aher6ueRF60U4frSOnIEVTh40M9YufPEbcO81CvooQJZPJVLjRpbmDDhZFq3nsvgwfD553BP4N6I4Klb1x0vJACxdLPGCyGZIsdMy8WQkmJkKuwFftJJ5gProiL4T8/d+A8raclOauWleV4rO+YCp56zmRdfPIWBA//ySo+l5zXgrauqS1V1sKp2cpbBqrqkpIQrNSS6lcu2bQvo3fstfPoadJ7ILdQFoMbf6QWyeLVcchNp2TKdzp2/LPZNU6B8UpIdc4kSwSiXAwfMOtrKZYsz59cla7C3Q7lyMGYMtG8f+jkrnp7GUtrybyb43O9quezenUtmZtmMOPnhh2tp3Xoeder85pUeS89rjH0XlT5UYeGqKuRqIhw5wmefvc4ddwyhQgUfmVNTAejJHH6mO71vK2hz4Klc9u49hnPP3c/UqQ8X+abx+4WZnGxbLlEiGOXiavkec4z/PCXB998bLbdmTQneCI0bF0jyvI87YPzurV2by5Qp5hpt9x2UMm45pt6xLN8PGbLXKz2WnlerXIrJhg2PU6/5W2QmpsCRI3z66QNcf/0ftG1bMO++lVs4SEWqs5fuzCWhVo0CeZKTYfr0ltx6660AZGaaiEeqMHr0IP7979vD40MoxJbLrl2fs2fP92E4scVFoBdB+f3bOe2YFdTdGl4HpqHStOk8AA4f/q6QnCVHw74XMG/euTzxRDJVqkDHjrBnT8F8zz8Pc+eWvHwlwZFyOxm2CFYneXuYjSX/YsG43C/4BrTkUalSOwA0NwGOHCEjoxZbtzb12WLo/csjVGdPwK6FpCT48ceLWbGiq1d6Tg40abKMli1/LWw6TXCEOM9l7dp72bjx6TCc2BJMyyVj71F+3H4i61cVbpkVSVRPBuDll0+Lqhyez9P+QxcyevRnDBxYnauvhp+vncwJ678uUGbtWhgwoASFLEHWLavFk20hcU0Hr/RYarkEE4lyvogsxrjZ/0Lj0c91EfnrLxg79jxq176BM7u8C9u3BByIveq2Wpy7eR/iuysZMMpl8uSCDuiOZuUy4+NrqNb2E87ZtZ3mqcXsLwlyhr6rPm3afII7ooGlOARjzZRzrPG1mtitayE5I4tqG845J4OsLHc/b8wZY91wAzRqBOvXA97XN16Vy+ED5elcA77Z5/3tH0tv52C6xVpgZupfDawWkcdEpEVkxSod7N8PP/7oEXWvUiV++slsihT8o0fcV4mHHwzcWkjyo+63bDhC5RO/5LPU71i+ZU7xBAfTcglBuZQv34iUlALOpS3FICjfYjHQcZ2VlcoZZ5SwShkyBJ4OsqWcng7Tpvnc1aVL+ESKJVz+1fKbWIwd6zYGiTaF3rpq+EZVLwduwPj3WiAiP4jIKRGXMIZJSzNN78RE5w8+epQLLzSb9ev7MNlcswa/gb8d/CmX/6WXZ99vlzMtDZpWKjjgWRg+3b/4UC7z5+dw113u2AGx9CUUNIsWwbhx0ZbCL0G1XJy/JtoRjvN34ZXY/TBxItx5ZwE5fNKpE/Tq5XNXLCjnSOBWLt48/njsWM8FM+ZSU0RuE5F04E7gVqAW8H/AWxGWr1Qgoub7ITubCy4waZ5K4pAzneWx4yfzY8fAsUgDRZNLOFqZxhUhJTH4kHN+H0o/ymXBgo/p06cyjRsv90rPzPybnJwYuWsL48IL4bbbePPNok3iKymCabnEinIprcSrcnGR12vigb8P1JImmEv/C1AFuFBVz1PVD52IlOnAxMiKVzo4++ypVKi9H7Kz814KOTlQseJeTj75S358fQ3Z2XAvj/HBEUf7dPQdaTLQjZGTY940bv+cxcCPcmnePJty5Y5Qr94aABo2NF3ZS5acx7JlA4t/3hJg1/a9/Pedmnz44TjfnhKiTCimyLHycvSUNVb0TTCtqFi5fuHH/AsdO86mVq1/vPZE+4PERTCX/hlVfURV86I7iojLM3HYXe+XRnbsaMLB9bUhO5tl6cYX2LuvH2bsiG946qm+ZKT8nNd6qXFcNWMJ8L1vs15/yuXY1H3k5pq7Jjc3TMrFh7WYqpn1lppqOm6zs43n5iNHtpOdHdEApGFh/35YltOGn9L7s3nzcXxd0Igo6oSiXKL9oojFlkthMnnuj0X5w4GrW6xv36ncdtswr33RvmdcBKNcBojIla4fIvIyULzQjXHGY4+u5oJrtkN2NnUSdwLQbtu3dL+wF1u3NqLCMVXy+kHrJO6E5s2hWjWfx/L3pbX1UNXwur1wrMVyc82LzPWiEzETPevUWZ+XNTsbKlc+uYCH3FjknXfg9KP/4+mnJ9O+/Y888siFET/n33/fy9atM7zSVM1183XJ8iuXG24wA7GeuEIvxMqLwkW07oCi3nrx2nK54w631ixf3ru7ujR1i10EXCMil4vIDOCIqoYxJGLpZ/Efzhtg2zaOaW9cu0z4tjmXXlqLyy9fz5EjA/jLcQFUafn8gMcK9KW1cGFvzj13P0lJoZvA+BvQf/mWZSQlwZYNR53zm0mbnqanR4+CSAKFxSyPBargDnvQrt2P9OjxSXi6EQOwbdvr7N07xyttxw4zfvbyywXz51cukyfDffd55xk+3Kxj5eXodf9EoTUQhDMJn8TK9Qs3XQNYqMfKB0mgSJQ1nAmUFTBWYiOB/cDDdmKlHxIS8j4bvl5/AmvXmuTc35dw991mu37lotsJ5uYmOTP2g797Ag3oP5R9Dy+8WZuHGUPlPRuc/KksX96FffvcTgNNF01CqXAU+PpT7ojWEyY8wzvvjEW1iG+mIDHXxftRcjk/KFeuYP5Q3NFH+0VRLNf5YeDEE826qMplYOkYJiwC7gc7/6B+tO8ZF4H0+kIg3VnPBqphIlC60i35SUjw+RSOf3AnF18MrZoe4qQXrwv6cI+N2Ja3fSbf5G3nP8WKFcYd/88/hyDr3r18QV/W7D+GMTxK5RRjfiySwrBh8/j226vysubkQFJSFZKSKnPKKXDjjSGcpwSZ1OFlPlvdMu/30qU9+OSTe0hISAlY7siR4r08Dx/O4auvEtjlMSTlRF+IG+XilVaC53d18YSiXDQn9j+Cio/7X+jUyds1T7TvGReBXO43VdXj8q1dy3ElKWSpISsL/vvfAslz6MWIEbDs71SqDuof9OGGXrI7b/tb+uRt5x+HP3rUOO7LCsVTSOPGZJPEuXzmPgi+XyZHj0J29lu0bz+b336D338P4TwlyJDf/10grTAPNxkZB+nW7RtGj/4ncMaA5HLoUKLXuYJRLoEYMGA8F100LubmGZW0OC7lsnJlwX3+ro386u56/vDDCAgV48SKEUOgbrGTReRYj9+DROQTERlnu8XcrFv3PWed5QzmTp/Oz+/6fkkFmr/iD383Sf6Hql07+PVX6O0zGLQfkpM5SjLJOP03R1wtl4JZx483rtO/+gr69g1RiZUgK/91H+XIon6C6RqrU2cdvXtP5MiRbX7L7N+/jmeeOYtzznGHit22zQRy+/TTDPbu/aHQ86ak5HLxxQnU9jBz2bdvOo8+2t+ncgmGLl0+p2vXz6hYsWjlw0WBVlYJa5fq1c3677/daYW9PKu3cLtGcnnMiDc8I83/9lsvmjc32488EiWBfBCoW+wV4AiAiJwGPAHMAPZh3MFYgFmfvM5NNzkDKrt38w7h6+QVP09yWL5mk5PJJokknP4Gp+XiawA0KekIHTrMZsWKjVx6qbFuiiluuw2OO44TLm5DH76hRmVTp+OOW8KNN95MZuZav0UrVGhaIC011SjQpKTGLF7ck6ysLQFPr5rjGDy4mTFjH7Vrbwr4UXHwoJmI7otRo75g5Mivov4VGu0xl/qOx6H8Bg8BadYsb7MoH3WxSEaGcTXlxvvG6NABjj8+xOsUYQIpl0RVdfXLDAQmqeoHqjoGOD7cgojIFBHZLiJLPdJqiMg3IrLKWVf32DdaRFaLyJ8icrZHeicRWeLsGycS2cdz0qvPc8MN7n6isdzrO2MRnk5/khfFrXaB0zvKJa/lsnu333NWqrSX558/g7lzP+SKK8CJBhA7bNliZnoOGEDS+X3JqWgs3tLT+3DDDVuoXPkkv0VFKnL55X8zeLDbI0HlylChAuzdazwC5+YWjBjq4vBhVyx3747ul14azpAhC32+3FzXeOtWuPlm730LFsDs2e7fPuMCRZFodYvVq1e08jVrhk+WaNKxI5x+uu995csrycmx56opoHIREZfFdG/Ac9ZfJCyppwHn5EsbBXynqs2B75zfiEgr4DKgtVPmZXG77J0A3AQ0d5b8xwwrQlX27nU3wz1NYc/q4fFSKoKOW/JXwYHoypV3s2vXMH74oQmHD28sXL4AwcKOkuxuuThNFl/5Dx6sxogRc5gz5+JgRS9ZHn7Y+G1LSaHp8Yk0P9ZY5B09Wp7du48lIcF/31RuLmzd2pQNG070Ss/IgFNPNd4UsrP9W/h9+CEcOJDL3r3uR+muu9z7MzMLlgl0K3z44dOsXNk573fr1v7zRgt/4n/+uZnCFZaQEA5FGdD3JF6CiJ18Mnl+C8G7W6xx48VRb+H6IpByeRv4QUQ+ATKBnwBE5HhM11hYUdUfgd35kvsD053t6cCFHukzVTVLVdcCq4HOIlIXqKKqvzihAWZ4lIkITZqYz4Wq7C2wz9XCGN7wIzPQ7zlYoeoe9fXDn2vdL8VXuAmAK698DJGXUV2PSDHa/MnJrOU4yuHI4Mjm6ybNzi7H77+fzs6dDQrujAVatoQmTQATIOqD290OxXL37DVvPT/4HRQWKFfO9bns/5MwKyuXihUPeCmXZ55x72/Xzvex/fHHHzXZurVgV120Cear+LzzYPVq8uZ0hQNXy6+oyuXkk8MnSzR580346CP3b0/lUrHiXtLS4KwO2+D116MgnW8CWYuNxTinnAb08IjjkoBxXlkS1FHVLY48WwBXE6E+4PnZvslJq+9s508vgIjcJCLpIpK+Y8eOIgtY25kO0ow1BfblOt94HTJ/gX79oG5d987HHoM6dQI+tQPP3pu3fROvAuS9eNLTzyQl5VhfxYIjOZmHuJ/hON6Dnc/N/C++SRMiOwExEkiSu4tKEXjoIb95A3UxusdR/P9H9eqZfa++6v5vp041606dTD94weP6P+cXX1zHww+/A0DPnv7zlRT5x1z+OLyD5HLuFvnLL5s8H3/sLhPOcY7itlzifZ7L5s1NmTr1IUaMgJcbP1WwnzWKBJy/qqrzVPUjVc3wSPtLVX+LvGgB8fV4aoD0gomqk1Q1TVXTanua+YQqiDOByTX43ow1pGIuV67jvTh3pzMBYs8e+PNPs33ffbB3b8DWi68B/W++MfNPFi48s8gyA3D0KPfzCO35wy0bBQf0KybFqGlYACTZ3WubS+CgaIHHr8ztFGjyqGoCl166gffeuyMvrXLlwMcOtgtj8eLg8kWS/LJe3Qj6e4x/DHPcWnkG5br33vD1/wdSLrE2xlCyVOW55yZwzz2fMmPG/SYpN5d9rZXPXvuU/+u7HD0a2cnDhRHrzhG2OV1dOGtXD+omoKFHvgbAZie9gY/0iLFpk/fT15X5ZFCJHzmVu386H3BecC4++cT7AAcP+j22S7k8boaaADh8OJW77vqKOXMuDdTbUzgN8nVxOcol/8uk78WpXr/vv588bwOxSoGWi6+BD4dgWi5bt/p/iyUkCDt2NMTzu6ZaljF93rVuP1t8GJr5Uy7vvOP925frmGjhepFf1xTOq1twf716pvVSqdIeFi5cwe+/h+fN7xqQ92wNxeL4QkmTkFCRNWvac/fd13D88YtMYm4uq6/LQmvdwHNftuKjD3K9JvaWuIzRO3VQzMIEJ8NZf+KRfpmIpIhIU8zA/QKn6+yAiHR1rMQGeZSJCF9/6ziTrFLNK/1Ufqad0ypQ14tn6lTTbJ03z53R5dFy3rwCn2d5XRIeL66cnGQaN17OxIlpHAgh5FyBGGVVqnj/dl7Ang9uH75m7lzvbI88YrwkxzQenvsyqMSGdb41yPr18NJL7t/5G5Gpqa1ZubIrH37of4jRl+l2x7bmf6xdJYt69eC997z3+3s55jfxPuMMv6ctMYJ9kW/aZC77qad+xPTprZgwYWnhhYLgxhvhuutg8ODC85Y1srOT2bevFjk5zv2ek0Pq5kQqVjTd/BdfXq54H6DFJGaUi4i8jYkdc4KIbBKR6zFza/qIyCqgj/MbVV0GvAssB74EhqnbO+HNwGuYQf41wBeRlPv01uaPTKqSChMmeO1LcBw95pJgRnmvucb0mRzrMVaydi0sWQKnnAL33ONV3tVy0Xy9fevWtea7766gVavCjfZycv7g6qsfoVevnd478tu4On05ni+TR7kvL/iZJ4XYIUSfxETEw8nmnRVe9JmtSRN49FH37/zdLCkp9WjZch61a/u/hXwplxpt66MKJ3Q33a07dxZeBqB/PucNMTFHY4PxOee6ONu2mQ4DV4vvYL8r+Lv52YgY5ZKZWQmAI0d2FjhUUahd2zj2rFo1LIeLK/76K43Roz9n7dq2AGxptJxqK1LYcU/PvDzRnIQbM8pFVS9X1bqqmqyqDVR1sqruUtXeqtrcWe/2yD9WVZup6gmq+oVHerqqtnH23eJhiBB+cnJosdH49UkQLTB6WIud/NmgN5cxEy66yL2jSRN3iMRVq9zOun75xat8nnI56xwvQ/+FC/swfvx4fvml8EkQ69f8ynXX3U+Lqku9xx4qVmQnNbmRSWygYQFrsWaspvNxu1xGWF44PWixS2Ki13jVSbu+CZDZTUo+y29X5M3cXP/XOdCXvWs+UI18/ix82Rf89BMkJXrfqrGgXFKWGDeC1XN2smIFXHnlGvr0yeKJJ8z+igmZNK2wFTAfHUuXdufFF5+nY8dm/g5piRB/dp7N1tMz+Sx9UF5aamqAAhEmZpRLqeSHH0x0KiAh96jxVeEyFQKSyKFFo8NUW/IzNM1nXupy9/rkkzDf8YWUz/OkZBqrHD31NGN6lI9p0woXccXCi+ndO5vbN77iDhICUK4cu6jJa9zIB1yc1xxxfVUnkAtJSXluJfLj8vobk+RTLufzaVDFduc3hHeOcfSof4OPQMqlTh2zXpPPkLB6tYLfO127wjffxJ5yOenuPvzn2sVMfyORFStMt2x2djlWrHAy5OTk3TS9esHOnfX54IMRHD7cKHpCA2lpcPbZhecrrfi67/aubMVc0piBuw/Rs+Vy2WWm3MKFJSAgVrkUDxFOxDxl4rIocv3rvXq5f7dpU7Bs9epcw1R6rTaedHIRnmQku+YscR++l5mSq/sPQGYm5fC23ApgC5CHVqpCbm4iCSjUcrvRp1w5WvAXKRxmO8cUaLkcIhVE/H75xPSgaj7lUrFiYGHT0r7mvffq8fbbf3ilr1zptBzV/2PiqWTzGwe4hrUeeCBfIR8OoBITYctWbzljQblIlcoMn9KBWi1qeDV886ZT5ObmueGtVMlMOXIlR5pAfRLvvAOvvhp5GYrD8k9Wkf7sDwGtGf2R//n77TfYX74BiYne47ae95DLYOTXX/O+iSOKVS7FoX17bucFevG9e1TE9a+/9pr5dApg5pw2qBWnYxwj/kwPRvEkQx5wj8fkdYs9/TTUr19g7KVt20Lke+stWLXaHKtFC7yaIeXKIcAOavMY9+S1XFwPbEUyQIRzfPg3ePTR2Il255P8yiVjW8A3UUpKJrVqbaF8ee8H88MPXW9I/8qpcWP39l/zvJs+Lkunfv28y0jrVnnbd9xh3s0i7tC1AKfVX0OixJbr+NxsH/J4tFzAPYs8kmbCwXzYHHccNGxYeL5osWsXtL6wOSffeXrIjmAzMgoae3TqBBv/SSmgXDwD3n73nZnLffPNJTP/xyqX4uCMMipixlw8UYXPPvOeVpuPW6Z35sHUpwFYhXnxV04yVlsVOZj3gtxAI59v80K7pq68EnVNlsh/BzsDDJU5aF6dTls5a4t5QdZiJ4gwZEjBw97rx31azOAol6rlD1M1JZNq7C2kmWeuc7163o/D4eR5DJwHi3Pf81UIgBYt3Nu1n7+nwP6aFTKoftjbHtlT8SUlub8ur7zyMd5800SzuGdys5gLo5h10McN59FyAbfIJdFyKY1kZ0OjRsrFPd02wtsGjwzpGF995ft2Xru2LatXd/RK8xxHPOMM97325ZeRb73E1t1b2nAeqjn04sd/nAFMzynNwUTtOWTGVU7lJ25hPM/fto5JV//I15xlurKAGuyGpKQCLRfXDbZ4MZx5po84KwMHonWNgwIZfLX3vqQk0z52GcL//DNccgmH+18KQHnC6CCqpHGUy5DD/2H3C69TjqMBn6SEBPMmzO/j9NsvMzipOlTWrQFPN55bGMs91Kxe8I16bebLnLLxXa+08rPd1mfZ2e7vhv17j+O330zchITpUwkb2dnmvvx3wXg3oVC9to/mar6Wi+sSWuXiGxE487QjtF/6Rl5a4vszQzqGv9fK5MljeeqpKV5p+Y1UfAzdRgyrXMJE19qm+6moPspbsIrxDKdat1bc+OdddMNYjj2ZfB9nz7zOp3LZ6DjA+fpr0+TNyMh30Jkz0W7djVht2hiZeveGT50B7rQ0b1Om99/nAMYkOYOKeXX58YKnvQ67enVIVSse69ebUckvQrAoT0xkHl25jf+QUN7xz+a6WD6oXXuTU8z7cdj9TyvuPgEaa2A3O7fwEvfwuM8u0Kd7fcH1VfK1fDIyGMetLF+mXrPwZ316GV2qmJn+iR9/EPCcIfHUU2adz1Q+VLKyC77VDiTAmK7NmTHDuHKOtov+WCcxEaZMT+I/jEBPPQ1FqB/iPG+XoUgwuLxFuKhVC95/H954o+BUt3BjlUtxOe44FOGXU/7P/C7u0yXiturq2pWRtafSe2Atn8rF9S5ztVg6ereIvcQQwcyk/P57fE5ecTiVnziWLYzn1rxITXWeucsrjyvGRokwbhxHDh1l9bm3Bt+MT0igA79Tjy3uQZH9+83ntGMS5jlpPzHRFYXTezLF33+35ZVXnuCRR94O7ry+IoNVrAhL800ozMzk1o7/48RWQoUKcIzbqTa1GpY3VcgMwlojWFz9mPm9MoSILw/DOZJNp1M/IydnFeBuxFjlEgDXIFsRfRr6G3P69tuCafmVC8DFF8OVVxbp1CFhlUtxcU1GfPhhsy6ucvGM55qTA5s3m05WH2Murgn9LVvCuefmmxc5fz507Ii63LrMme0dFMOPM8da7GJLWj9OJh1eeMGrSo0bm+ehRGOMPPcca2lKc1bz0Qvrgyvj2W/gmpSzcqWZ6l2zJuzaxUcfwV13Xc+jj/bjq6+u4corV5GYmN98Vpg582527SokmIjLIakv07qsrIIzAI8ezev8fvFFvLwg5CSbi5tIBByGFnOEe/Uqc097OqlMOlCOAQN2sHOn8dpdkt1ipVqB1fXhQwfMx9+zzwYs6ku5fPJJ7BkwWOVSXJYtM+tLLjHrUJTLrFkF03r0MOthw8wES4BvzCTA/C0Xl3IZM8bYDngxaZIZjNlq/FxJ9WreTRvPyRdjx3qX/eUX8wJMS/NKTk72tmaOOA8+CMCxbOV1rqLHpEGB84MJptK+vfv35ZebdUKC22/Nzp1UqAAbN57AunVt2L+/Jps3H1/08XPX5NeDB804lidNm5pZ7i4Pj+ClXJo08e7myP3kvwAkXhtGfyfnnWeidX4T3GRSfwyt+jZfcxb9u3iMQTlmtK7b3tUKyz9xNJzEtBl8sNSo4XNU/rdHP6fCnf9m3lehuRzq18/bc8YHH8CMGeEQtOhY5RIuXIOlLk+Ff/zhP6+L/P4+PBk82O1s6qqrOLgvB833dwV0Q+7MctMmzuTNjh3dsy6nTPG+80aP9i6blOSzpeRXX27eHNykm1DYvDmvdVWV/VzFmz7DGhTAM5gKuJ84zz61rCwqV4aZM0fy2muP5SX7Uy6FKp1KxuUJDz8MnTt773M1815+2fwnNWqYATI/k1gW7jdWgwkXnFfISUPg009NK7SYvkBa1NxFH77xujc01/umGDLEuGvx1KVlkowM+Ocf//srVPD5zGR16sZhKvDya+U4eNBEK23b1u3QA/wr1/Lzf8jbvugiuPpq3/m82LzZx2BteLDKJVyMGGHWrn7U/NOyfdEowCzmcuXMQGxmJnTowB8J7Qtk8atc7ror72tayxlzERHctsv5XzKBPgVnzkTmz/NOW7DATHZ58klT3/r1fXfuFoe+fd3brs/g664r+vGWuCenkpXFvt0Fu538WeHkt7gpQKDZjp5OSlu1cnfTLVrkM/uZ1RdyI5PynJ7GFK4bzlO55Lgs7czvxETzN8X0PKhI07Ch+eBo0MD/F1lKigm5kb9obWOl+fr7FdiwwVzypUu9lYu/j51yr77ke0cg6teH004LvVwQWOVSXAYOhJM8YrS7OpuDabt/8YV/5z/JyeYY5c0Ab83K3nMMEhM171n/dcSbLB3qOGdcutT99X7++XniJCTgVi6+Xobff18w7frrTbfS2x4D2qrQpYvpixs1Co45hn+oxwM8yNF9/mPNh8Rll7lbfkePcnTJSn6mO0cqBxEQfdeuvO40L777zr09eTIJA/9VIIvfh9Z/lGRD/jep58i3y1NDfgq4qTacPPA4JjGE1B3rjWcHV7drLOC64TzuH11srEnioqsqXGzyiFc4b57vPPmVzksvQVYW5VLMhby8XwZNmriHZjxDR/u71ovKdQHgtqtC9LP/W2TCc1nlUlzeesvb4aTL5DWYDvxWrfy3cPK9sGpV9VYuKeXcyqXzf67k9ldOMC9817T9hg1h1ixvazHXl5Kvz8pevYxtoqeinDKlYF18xEZ5lv/jYR5gxrWzfdclVFx+KoYMgaQk9hyuwKn8zGu/BBFQvkYN428lv72mp2XO228bU2uHy8/dC0CiOhf0lVd4daDb9MbR725U4d133S/+/Bnq1DFToV94wSjoYFE1XaU5OeYjYdmy8DUBMjON0nZ9RGzZYvpNAphoF8BHywXH7ZHs2+udd+tW47kz1OnnpZ389e3WreBsZ1XezL2ci3kfhg83abfcAuefT7kUoTyZdO94iNRU0xJMSsqnXDK8u9PqVtgDubn8udy0xpOyItPNFSpWuRSXhATvT9vHHjMv+KuuCq6868WU30w0X+siv4XWoMEJeb1EzzOCh3jA23/8okUgQrkNZlJKYtYhmO28/P0ZuC9fbibNuHC1AL78EnA+tjwjWL30EvTuzbAR5XiG/+OiysUbMM7jnHOMnfWYMQBUrWH6q3YcyP+WD8Dnnxcc/3Cxf7/xnebQ4vMXACh/QR/T6hg6lB3vultyKSn5vjLHjjUt1jZtzHVOSCj4//XrB7ffHprZVPfu5m2SkOB2jBUuC4r9+43SdnlzrFfPTHYINO6Xn/zKJSPDbWSS/0u8Tx9jClecgCLvvGNkLE3kD4AEbie1wOqZ6cxN6M7OX/7iL1p4u7v49luqTXmOHzmNMzq7FUj58t7KZd+ZF3sd/p7MMfDee1y86xUA2vUOMrLuf43xSJ7PnnCjqmV+6dSpk0aVzz9X3bpV1TyiZtm1yzvPyy/raMZqXz5TUF271mOfq0xysuq+fV7Ftkkd/T+e1qNvvav6/feq112nevhwcHItWaIKuprjFFSPO069ZXTx4Yfm90UXqebkFOUKBCYrS0G1VtJu8zs3t2CeHTsKpr/5ppGrTx/Vxx/3usaPcG9eNVbRTGdyqeZ61g30Ph5WUG3TeL/7mAsWeF8D13U48cSC6aD61FNmXamSasOGqq1aFbx+qqrPPedOz8426/Llw3cNXccEc51c223b+r6evhg40JRZt878Bt1OLQXV529b6523eXP3uYpK+/bmGO+/r/rrr3nJL75okrdtK/qhI8aQIb7vA1XVgwf1FsZpJfa702fOVH3+edXTT89LO47VeunZe/MO6XW7HDmiR0jSETynyzhRh/Ky7qWKKugqmimovv56EHJu2OA+8D33FLm6QLr6ea9G/cUeC0vUlYuLUaPcf3h+BTBpkiro0fMv1L8XuW883bTJXebUUwsec/581W7dVA8cKJpMnsql6g73uW6+2Z3n6NG89GwSdO43B3XjxqKdzifZ2XofD+u7/Et1+3ZzrrvvNvsyMlTvu8+k3Xabd7nDh1UfeEB16VLz++DBPDnP5gv3Q+vrZQC6mHYKqmks8LoeCqpVq3o/9Y0a+T2Ogur48Sbfjh3e5VRVzzvPO69Lgf3rX2G8iKo6a5b5wGjd2hx/3768l/9DV6zQs5qt9s6/erVRPiefrPrnn6qdOxeo1/f0VFA9v/Uac327dFHNzDT727QpnryLFnmf78gRVVV96SWNTeXy7rv+//+//1Z9/HFdSQudzene+1xs3ap6yy36P07RPyqdorp8uap6ZAPV0aP9nuNPmiuovvGG+Vt/fmeTbjr/JvN/eHL55d5lzzuvyFW2yqWQJWaUy7Rp7j88/xffjBnuG6FuXdU9e0z6VVd53yhdu4ZXpoEDdQc1FVRvYqL7PB5fkqpqWk2gB0lVUH30zNnhk8H1pT1smOrPP7tleOUV87J0/T7xxMDH8VCCc+nqX7ncf78qaA6iI3lC19LYlPf8+v/gA9UrrzTbK1aoVqvm/8Vy111uGfbuLfhScf2uVMkoxLlzVVNTVefNC9819KRyZdVatbySnu/+nl6Z+LZ3vnXrVHv2NLLVr++zbjve+FLPa7NW//p2vWqHDt77r7+++LJ6Hm/qVFUNQrls3ap6wQWqc+aYjE2bup+n559XrVPHtLA/+UT1jz+KJ9/nn5vWyvTpbjkvu0x1wADVhx4y2670G28seA3fe8/7eJ9+WiDPCJ7TKimZ/u+vfB9Dr7+ueigjV0H1MUapPvmkOfbGjar16vkuX0SscilkiRnl8s03/v/sP/8seEPcfbd5cYXpRvHLzp26hqZ6hCRz/CVLCuapYprmR0nULzlLV782O7wynHCC6Tr66ivvujqKQEG1XbvCj5OYmJe/gHI591x3C8/1BnMtb7xhWkau3wcOqKanm+2+fb3zVqum+vvvvv+PI0f8vyCiyZw5qmeeqbp7d8F9CQm+5e3Sxbyc/dVnzZriyzVlivcxV64sXLm4WrKey0knGaXt+u36L0eOLJpcvrpHwXxkeXYNe3ZBupbq1VUrVvTdZbh4cYH8/fjYuyvNc1mxIq/oDK5SUH3wxo26ceE2BdUXGO7//xk/3qzT0op2DVStcilsiRnloqr68ceq//tfwfQ9e1RFCnahePTV5i3F6ef2x7PPuo+fnV1gdzon6Xtc7M4zZEj4ZVBVvekmc/w2bVTXrzcvw9deU73wQqPgCnuheVwnL+XywAPe+Ty/RPMv//zj83gKRtm7FFRWluqhQwVl+Osv38eNFvPnq957r5HhnXcK3j/DhnnLeeiQeenn5np3y4LpLhw1yrQeQiE723Sr+cN1/OOP96lcnr7wZ737rIXmh59Wls8lVDk7dizYW+C5uHoUfMnuWo4eNS1YX+zZUyB/L77TBmwoeJzTT/cq+jVnKqj+/MpSPfTG+/oyQ3U31XzLOXSo6sqVZvvOO0O7Bl5Vs8ol4BJTyiUQ6emm79bXzdKihVkvWFD4cYrCwYPmy/6++3zuLjBQOWNGZOQYNsx8Sed/EV1wQXAvaY9rNpeu+iVnmd8//+yd7+OP/b9APDn7bO99335beB1yc03rb8AAU6Z9e/OgR4OJEwvW7+WXC+bLzTWtFNdgvieua3/LLUWX47ff3Oe/9daC+z3ke6nHW0a5UDsv7RqmaB++Mq2vYBVLURR6/vJr15pr41p8kZFh7tmaNb0/TII8xx+00ZW0KHjuP//0LufrQ7NNG9/1fuEFU2bBgoJjMiFdjjKoXIBzgD+B1cCoQHlLjXJxkZXl+ybP339bgmw94TT9k+aqV1xhulgidqKtZlA8P57GEIHw9aD5euBd3Vd16ni32tLTvfMdPWo+oV0vta++KnrdooGvl7EvBRJpVq8O/NK/5568fYtpp88xQjOoEFhxPPWUeYlGSrlEwjJStWA3q6/Fy1zU4e67vfOMGKF6zTXeaU2bqm7eHLbejTKnXIBEYA1wHFAO+B1o5S9/qVMuLn76yXzxLV4cbUnMSzZSD1uwPPhg3qCvX44cMa2U7GzTvRPoIVu1qoBpt19yc804S2lj7Vr3i2fyZNNFFi26dDFynHOO7/3btgVWJJ6/PZ+Jn34y5szZ2e7n5dVXi3a/5uYaq7vZs4tUxaB57z1jgXjBBeZjMifHyB3o42XPHlNPz5ZITo65348cMQYwgboei0Ag5SJmf3whIqcAD6rq2c7v0QCq+riv/GlpaZqenl6CElosFkvpR0QWqmqar33xOkO/PuDp12KTk5aHiNwkIukikr6jiEF7LBaLxeKbeFUuvly7eTXRVHWSqqapalptH+FpLRaLxVJ04lW5bAI847I1gBADVVssFoulyMSrcvkVaC4iTUWkHHAZ4CPso8VisVgiQVyG9FHVbBG5BfgKYzk2RVVjKDCGxWKxxDdxqVwAVPVzoBj+vi0Wi8VSVOK1W8xisVgsUcQqF4vFYrGEnbicRBkqIrIDWB/BU9QCdkbw+NEm3usHZaOOkaQsXL+yWMfGqupzLodVLiWAiKT7m8UaD8R7/aBs1DGSlIXrZ+voje0Ws1gsFkvYscrFYrFYLGHHKpeSYVK0BYgw8V4/KBt1jCRl4frZOnpgx1wsFovFEnZsy8VisVgsYccqF4vFYrGEHatcLEEjIr5CGVgsljgjHM+6VS7FRAznicgx0ZYlEjj1u11EGmgcD9CJSDMRqRBtOUozIpLorOPuIyTen3MI/7NulUsxEJELgRXALcBkEWkdXYnCi4gMAmYDHYH9cfrSuFJElgFPAx+ISNw6c40UInKNiCwCbou2LJEg3p9ziMyzbpVLERGRmsB1wLWq2hdIBlo5+0r9S1hEugPTgDtVdZCq7nd9zcRD/QBEpD8wBLheVS8CUoEbnX322QgCEWkJ/Bv4FDhNRI5TVY2X6xfvzzlE7lmPixugpBCRyh4/jwCVgGOd37lAXRGpW+KChQlXtwaAqv4PmA+c6OwbJSIXiEil0tw9JiKVPH7+DgxW1XnO73HAhQCqmlvCopUaPJ8DVV0JDAKeB5Zjvu5L9fWL9+ccSuZZt8olSERkFLBIRJ4SkatU9QDwBnCFiGwHNgDtgEeAM6MoapEQkYeB+0XE0wndUGC6iCwGqgG3Ak87X6ulDhEZCcwRkadF5HJVXYe3w9LjgLlREa6U4PEcPCki1zjJf6rqbuAjoJmInObkLXXvl3h/zqHknnXbvxwEInIGcC7QB2gCvCUiv6vqFBHZA2xS1dudL577gWbAN1ETOAREJAW4AxgM/Ibpc/0aQFV/dyJ6zlfVhc7N+CrQGFgZJZFDxunaeBbT7XUDcDxwl4j8qKr/iEiyqh7FfJ3+HkVRYxo/z8FvqvqHk2UFpt9+CPCjquaKSKKq5kRF4BCJ5+ccSv5ZL3VfFlEiGVikqmtVdTbwH+ApZ99uIEdEqjtfOYJ5iZUWjmL6y1sB84BeItLUtVNVX1bVhc72Dkx9a0RD0GKQAXytqpeq6mLgO2AJ0ADAUSwAbYGfRKSFiDzoKCWLG1/PweMe+zOA94GDIvKIiDyFeUmXFuL5OYcSftatcgmOVKCmiJQHUNUngGNF5AJgK1AH04R8FvPVsyBqkoaI0zf+l6pmAO9gXridna+cvAE9Eanh1K8d8Gu05C0KqnoY+K9HUjbQAdjiShCRRpgH6SFgJrBTVXeVoJilAV/PQV0RucT5rcBhjJK+GdihqmuiJWwRiNvnHEr+WbfKxQMR6ZmvHxIAVf0I0wQ+3yP5aWCkqv4JPAj8AxwEuqnqzyUgbsgEqF+Ws14H/AycDrR00tT5unkH82V3uqquLjGhQyRAHQ94/KwJbFfVDR5pKZj/eDvQXVVfjKyksYuIXC0ibfOn+3kOnsJ0tbh4HFgGNFLVpyMqaBEJsX6l7jmHgHUsuWddVcv8ApwD/IjpY6zikS5AirN9mZOnifO7EfAyUNGVN9r1KGL9EpztRGddBRgPXAFcDVzgpNeMdj3CWMcewJvO9tnAac7DVDfa9YjyNWyPGXP6GGif7xoGeg5eAio7v8tHux4RqF+peM6DqGOJPutldkDfaQIKMBB4BTPX4T3P/WqudJaIHIfR5q2A+8RMGLsAWKemiYmTN2YIoX7q1G83sFdV94vIKswLYxcwHEBjsIuoqHXEKJNyIjIB0/QfpWbcZQtlm3OBl1TVy616kM/BASfv4RKWORSKU7+YfM59EKiOJfqsl8luMddLR00f5GZgBrDa2XeJiDTAfMkiIvdibMB7YCyOpgKdge9UdWg05C+MItTvf8ApYmgJjACeVtXjVfXzqFSiEIpYx+5O8dZAF2ClqnZX1Z9KvAIxgKuP3YOWmLEFxLgBOUdEqjm/78aMMZSq5yBfUlzVD4pUx7mU0LNe5uK5OOZ2vYGfMC+kPcD1wLVAdYwVURKwTVWHOvnfVNU9HseIWfPK4tbPGcxMdH2pxSJhqOP5wM+qujcK4scEHtfwB+A9NSbZjwNrgPMwL6jqQCLwKHAK8E4pfA7isn5Q/DpG/FmPZv9gSS/AAIz1Qy/Ml8lLQAugHvAE0NHJVxPTTGzvUTaR2O9vLU79kqItfwnUMTna8sfC4ucaNsKMN3yP+ZJ13fPf4/TFe6SVxucgbuoXhjqWyLNe1rrFugAT1NiwPwisw1iCbAYeVNVFkNfn+CFG67u6YHLU+WdimOLULzsqEodOcep41OcRyx75r+F6YLSqzsR87SaLSB01X+1zMRZUpfk5iLf6QfHqWCLPelwql/z9kB6//8ZYRqCq6zFzHyqLSD/1GIgUkTGYfvkVTt6YutnivX5QNuoYaUK4hrOA2iLSA2N6exQY7VzDf2G6XWLuGsZ7/aB01zEulQvOQK4Ljwv6PnBIjDdcMNZBc3B7OT1VRGZjulkuVtVtJSNuyMR7/aBs1DHShHINv8fM3ViEmauyEjOp8ExXazAGiff6QSmuY1yZIotIGnA3sFlE3gN+UdUcEUlQY1W0B+Nc72YRmaWq+8R4yXUFiVoHDFPV5dGQvzDivX5QNuoYaYp4DSsCFQHUOKGcGC35CyPe6wfxUce4aLk4ZnVPYC7mp8A2jOvvRuDl/rsC8BVGy08SkXoY521HnHwbY/GlFO/1g7JRx0gTrmsYq8R7/SDO6hgOq4BYWDCmd9Wd7brA20Alj/0PY/6MjhgfUo9iulNexpmxGstLvNevrNTRXkNbv7JSx1I7z0VM6NFWwB+q+qlH+qmY+AubMZMfP8GY7E0C7lcPXzkikqqqh0pS7mCJ9/pB2ahjpIn3axjv9YM4rmO0tVsRtHptjN+cHzEBbrYDAzz2twZ6OdvXYibZNfXYnxDtOpTl+pWVOtpraOtX1usYdQGK8Id0Be7y+H01MNdP3uMwg14NSsOfURbqV1bqaK+hrV9Zr2OpsBYTkUGY8KILgIXAWic9ERO3e4mfomdhjBZcTvViMq53vNcPykYdI028X8N4rx+UjTq6iFnl4kwWOhZ4C8jF+Mu5EbhNVbeJ4/dHRE7EmYXtlCuH8Xr7JCb2wkhV3VfiFSiEeK8flI06Rpp4v4bxXj8oG3X0RUyaIjsXW4HKwD+q2hv4N8ZV9KR82c/CTChCRGqp6hFM3+UDqtpPVWMu1nu81w/KRh0jTbxfw3ivH5SNOvojplouIpKEMbNLFJHPMcFscgBUNVtEhmMmFZ2uqj84xQ4Ca0XkYeAiEemrqn8Af0ShCgGJ9/pB2ahjpIn3axjv9YOyUcfCiJmWi4icjumDrI6Jy/EIxj9OLxHpDHmuDx7GOGpz9VNeh9H2VTCWFRtLXPggiPf6QdmoY6SJ92sY7/WDslHHoCiqJUC4F+BU4GqP3y8DNwPXAAudtARM3+W7QGOMp88XgJOiLX9Zr19ZqaO9hrZ+to5BXodoC+DxB6QCKbjjO18JPO5sLwZudbbTgJnRltfWr2zW0V5DWz9bx+CWmOkWU9VDqpql7shvfYAdzva1wIki8inGFcJC8BniM2aJ9/pB2ahjpIn3axjv9YOyUcdgiKkBfcjre1SgDiZGARjb7nuANsBaVf0HYjP+QmHEe/2gbNQx0sT7NYz3+kHZqGMgYqbl4kEuJobBTqCdo+HHALmq+rPrzyjFxHv9oGzUMdLE+zWM9/pB2aijX2LScaWIdMWE5pwLTFXVyVEWKazEe/2gbNQx0sT7NYz3+kHZqKM/YlW5NMD42XlOVbOiLU+4iff6QdmoY6SJ92sY7/WDslFHf8SkcrFYLBZL6SYWx1wsFovFUsqxysVisVgsYccqF4vFYrGEHatcLBaLxRJ2rHKxWKKAiFQTkX872/VE5P1oy2SxhBNrLWaxRAERaQJ8qqptoi2LxRIJYs79i8VSRngCaCYii4FVwImq2kZErgEuBBIxLkKeBcph5kpkAeeq6m4RaQa8BNQGDgE3aikLJmWJb2y3mMUSHUYBa1S1A3BXvn1tgCuAzsBY4JCqdgR+AQY5eSZhvOt2Au7EuHW3WGIG23KxWGKP2ap6ADggIvuA/zrpSzA+qioB3YD3PJzpppS8mBaLf6xysVhiD083Ibkev3Mxz2wCsNdp9VgsMYntFrNYosMBoHJRCqrqfkys9UvAxAIRkfbhFM5iKS5WuVgsUUBVdwH/E5GlwNNFOMSVwPUi8juwDOgfTvksluJiTZEtFovFEnZsy8VisVgsYccqF4vFYrGEHatcLBaLxRJ2rHKxWCwWS9ixysVisVgsYccqF4vFYrGEHatcLBaLxRJ2rHKxWCwWS9j5f3DoXgg9hjyPAAAAAElFTkSuQmCC\n",
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"ds_all.sel(sky_condition_layer=1).sky_condition_cloud_altitude.plot(color='r',label='sky_condition_layer = 1')\n",
"ds_all.sel(sky_condition_layer=2).sky_condition_cloud_altitude.plot(color='b',label='sky_condition_layer = 2')\n",
"ds_all.sel(sky_condition_layer=3).sky_condition_cloud_altitude.plot(color='y',label='sky_condition_layer = 3')\n",
"ds_all.sel(sky_condition_layer=4).sky_condition_cloud_altitude.plot(color='g',label='sky_condition_layer = 4')\n",
"ds_all.sel(sky_condition_layer=5).sky_condition_cloud_altitude.plot(color='k',label='sky_condition_layer = 5')\n",
"\n",
"plt.title('')\n",
"plt.legend()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create netCDF from 10 min average files - remove times with no data points"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [],
"source": [
"CL_SM_avg = scipy.io.loadmat(load_data + 'CL31_ceilometer_ARTofMELT_20230507_20230613_10min_v01.mat',struct_as_record=True)"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"dict_keys(['__header__', '__version__', '__globals__', 'cl31_av'])"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"CL_SM_avg.keys()"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"('mday', 'doy', 'cloudcode', 'base_ht', 'vert_vis', 'high_sig', 'sc_frac', 'sc_ht', 'bs_prof', 'ceil_range', 'time')\n"
]
}
],
"source": [
"# get the data in the mat file\n",
"Names=CL_SM_avg['cl31_av'].dtype.names\n",
"ndata = {n: CL_SM_avg['cl31_av'][n][0, 0] for n in Names}\n",
"print(Names)"
]
},
{
"cell_type": "code",
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
"metadata": {},
"outputs": [],
"source": [
"# create pandas dataframe from the data\n",
"\n",
"# 1D variables\n",
"\n",
"DF_10min=pd.DataFrame(index=range(len(ndata['doy'])),)\n",
"DF_10min['doy']=np.array(list(itertools.chain.from_iterable(ndata['doy'])),dtype=float)\n",
"DF_10min['cloudcode']=np.array(list(itertools.chain.from_iterable(ndata['cloudcode'])),dtype=float)\n",
"DF_10min['vert_vis']=np.array(list(itertools.chain.from_iterable(ndata['vert_vis'])),dtype=float)\n",
"DF_10min['high_sig']=np.array(list(itertools.chain.from_iterable(ndata['high_sig'])),dtype=float)\n",
"\n",
"\n",
"#2D cloudlayer\n",
"DF_10min_cloudbh=pd.DataFrame(index=range(len(ndata['doy'])),data=np.array(ndata['base_ht'],dtype=float))\n",
"\n",
"#2D sc_layer_ht\n",
"DF_10min_scht=pd.DataFrame(index=range(len(ndata['doy'])),data=np.array(ndata['sc_ht'],dtype=float))\n",
"\n",
"#2D sc_layer_frac\n",
"DF_10min_scfrac=pd.DataFrame(index=range(len(ndata['doy'])),data=np.array(ndata['sc_frac'],dtype=float))\n",
"\n",
"#2D ranges\n",
"DF_10min_range=pd.DataFrame(index=range(len(ndata['doy'])),data=np.array(ndata['bs_prof'],dtype=float))"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"5426"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(DF_10min)"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"5426 0\n"
]
}
],
"source": [
"#check for NaNs - no nans in 10min avg data\n",
"selection = DF_10min.iloc[DF_10min[~DF_10min.doy.isna()].index].index.values # size with no nans\n",
"idx_nan = DF_10min.iloc[DF_10min[DF_10min.doy.isna()].index].index.values # length of nan times\n",
"print(len(selection),len(idx_nan))"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [],
"source": [
"#select only no-nan times; for all 5 pandas dataframes\n",
"DF_10min=DF_10min.iloc[selection].reset_index(drop=True)\n",
"DF_10min_cloudbh=DF_10min_cloudbh.iloc[selection].reset_index(drop=True)\n",
"DF_10min_scht=DF_10min_scht.iloc[selection].reset_index(drop=True)\n",
"DF_10min_scfrac=DF_10min_scfrac.iloc[selection].reset_index(drop=True)\n",
"DF_10min_range=DF_10min_range.iloc[selection].reset_index(drop=True)"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"5426 5426 5426 5426 5426\n"
]
}
],
"source": [
"#check for right length (same as in the beginning)\n",
"print(len(DF_10min),len(DF_10min_cloudbh),len(DF_10min_scfrac),len(DF_10min_scht),len(DF_10min_range))"
]
},
{
"cell_type": "code",
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>doy</th>\n",
" <th>cloudcode</th>\n",
" <th>vert_vis</th>\n",
" <th>high_sig</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
"Empty DataFrame\n",
"Columns: [doy, cloudcode, vert_vis, high_sig]\n",
"Index: []"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"DF_10min.iloc[DF_10min[DF_10min.doy.isna()].index] #check again for NaNs - empty!"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [],
"source": [
"# set time dimension\n",
"Time_steps=returndatetime_fromdoy(np.array(DF_10min.doy.values,dtype=float))\n",
"Times_nomicrosec=[pd.to_datetime(T).round('1s') for T in Time_steps]\n",
"Time_steps_dt64_org=[np.datetime64(t) for t in Time_steps]\n",
"Time_steps_dt64_org=np.array(Time_steps_dt64_org,dtype='datetime64[ns]')"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [],
"source": [
"# add date values\n",
"DF_10min['year']=np.array([Times_nomicrosec[i].year for i in range(len(Time_steps))],dtype=int)\n",
"DF_10min['month']=np.array([Times_nomicrosec[i].month for i in range(len(Time_steps))],dtype=int)\n",
"DF_10min['day']=np.array([Times_nomicrosec[i].day for i in range(len(Time_steps))],dtype=int)\n",
"DF_10min['hour']=np.array([Times_nomicrosec[i].hour for i in range(len(Time_steps))],dtype=int)\n",
"DF_10min['minute']=np.array([Times_nomicrosec[i].minute for i in range(len(Time_steps))],dtype=int)\n",
"DF_10min['second']=np.array([Times_nomicrosec[i].second for i in range(len(Time_steps))],dtype=int)"
]
},
{
"cell_type": "code",
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
"metadata": {},
"outputs": [],
"source": [
"# create xr DataArrays\n",
"\n",
"#1D: dimension time\n",
"\n",
"da_doy=xr.DataArray(data=np.array(DF_10min['doy']).astype('float32'),name=\"day_of_year\",\n",
" dims=[\"time\"],coords=dict(time=Time_steps_dt64_org),\n",
" attrs=dict(type=\"float32\",dimension=\"time\",units=\"1\",long_name=\"Day of Year\",\n",
" description=\"time as decimal day of year\"),) #added as 1D\n",
"\n",
"#date and time in separate arrays; microseconds approximated to seconds\n",
"da_year=xr.DataArray(data=np.array(DF_10min['year']).astype('int32'),name=\"year\",dims=[\"time\"],\n",
" coords=dict(time=Time_steps_dt64_org),\n",
" attrs=dict(type=\"int32\",dimension=\"time\",units=\"1\",long_name=\"Year\"),) #added as 1D\n",
"\n",
"da_month=xr.DataArray(data=np.array(DF_10min['month']).astype('int32'),name=\"month\",dims=[\"time\"],\n",
" coords=dict(time=Time_steps_dt64_org),\n",
" attrs=dict(type=\"int32\",dimension=\"time\",units=\"1\", long_name=\"Month\"),) #added as 1D\n",
"\n",
"da_day=xr.DataArray(data=np.array(DF_10min['day']).astype('int32'),name=\"day\",dims=[\"time\"],\n",
" coords=dict(time=Time_steps_dt64_org),\n",
" attrs=dict(type=\"int32\",dimension=\"time\",units=\"1\",long_name=\"Day\"),) #added as 1D\n",
"\n",
"da_hour=xr.DataArray(data=np.array(DF_10min['hour']).astype('int32'),name=\"hour\",dims=[\"time\"],\n",
" coords=dict(time=Time_steps_dt64_org),\n",
" attrs=dict(type=\"int32\",dimension=\"time\",units=\"1\",long_name=\"Hour\"),) #added as 1D\n",
"\n",
"da_min=xr.DataArray(data=np.array(DF_10min['minute']).astype('int32'),name=\"minute\",dims=[\"time\"],\n",
" coords=dict(time=Time_steps_dt64_org),\n",
" attrs=dict(type=\"int32\",dimension=\"time\",units=\"1\",long_name=\"Minute\"),) #added as 1D\n",
"\n",
"da_sec=xr.DataArray(data=np.array(DF_10min['second']).astype('int32'),name=\"second\",dims=[\"time\"],\n",
" coords=dict(time=Time_steps_dt64_org),\n",
" attrs=dict(type=\"int32\",dimension=\"time\",units=\"1\",long_name=\"Second\",\n",
" description=\"Time averaged to closest second\"),) #added as 1D\n",
"\n",
"#add cloudcode flag\n",
"da_cloudcode=xr.DataArray(data=np.array(DF_10min['cloudcode']).astype('int32'),name=\"flag_cloudcode\",dims=[\"time\"],\n",
" coords=dict(time=Time_steps_dt64_org),\n",
" attrs=dict(type=\"int32\",dimension=\"time\",units=\"1\",\n",
" long_name='Data flag: Cloudcode',\n",
" flag_values=\"-1,0,1,2,3,4\", \n",
" flag_meanings=\"missing_data\\nno_significant_backscatter\\none_cloud_base_detected\\ntwo_cloud_bases_detected\\nthree_cloud_bases_detected\\nfull_obscuration\",\n",
" description=\"Code for number of cloud bases detected; see Readme document for more information\"),)\n",
"\n",
"da_vertvis=xr.DataArray(data=np.array(DF_10min['vert_vis']).astype('float32'),\n",
" name=\"vertical_visibility\",dims=[\"time\"],coords=dict(time=Time_steps_dt64_org),\n",
" attrs=dict(type=\"float32\",dimension=\"time\", units=\"m\",\n",
" long_name=\"Vertical Visibilility\",\n",
" description=\"Vertical visibility given in case of obscured cloud base (at flag_cloudcode 4), else NaN\"),) #added as 1D\n",
"\n",
"da_high_sig=xr.DataArray(data=np.array(DF_10min['high_sig']).astype('float32'),\n",
" name=\"highest_detected_signal\",dims=[\"time\"],coords=dict(time=Time_steps_dt64_org),\n",
" attrs=dict(type=\"float32\",dimension=\"time\", units=\"m\",\n",
" long_name=\"Highest Signal Detected\",\n",
" description=\"Highest signal detected given in case of obscured cloud base (at flag_cloudcode 4), else NaN\"),) #added as 1D\n",
"\n",
"\n",
"#1D: dimension range_levels\n",
"\n",
"da_ceilrange=xr.DataArray(data=np.array(list(itertools.chain.from_iterable(ndata['ceil_range'])),dtype=int).astype('int32'),\n",
" name=\"ceilometer_range\",dims=[\"range_levels\"],coords=dict(range_levels=range_levs),\n",
" attrs=dict(type=\"int32\",dimension=\"range_levels\",units=\"m\",\n",
" long_name=\"Ceilometer Range\",\n",
" description=\"Ranges for the ceilometer backscatter profile, including the instrument height\",),) #added as 1D\n",
"\n",
"\n",
"#2D: dimension time/cloud_layer\n",
"\n",
"\n",
"da_baseht=xr.DataArray(data=np.array(DF_10min_cloudbh,dtype=float).astype('float32'),\n",
" name=\"cloud_base_altitude\",dims=[\"time\",\"cloud_layer\"],\n",
" coords=dict(time=Time_steps_dt64_org,cloud_layer=cloud_layer_levs),\n",
" attrs=dict(type=\"float32\",dimension=\"time, cloud_layer\", units=\"m\",\n",
" long_name=\"Cloud Base Altitude\",\n",
" description=\"cloud base height of 1-3 cloud layers; NaN if no layer detected. \" +\\\n",
" \"Instrument height incorporated.\"),) #added as 2D\n",
"\n",
"#2D: dimension time/sky_condition_layer\n",
"\n",
"\n",
"\n",
"da_scfrac=xr.DataArray(data=np.array(DF_10min_scfrac,dtype=float).astype('float32'),\n",
" name=\"sky_condition_cloud_fraction\",dims=[\"time\",\"sky_condition_layer\"],\n",
" coords=dict(time=Time_steps_dt64_org,sky_condition_layer=sc_layer_levs),\n",
" attrs=dict(type=\"float32\",dimension=\"time, sky_condition_layer\", units=\"octal\",\n",
" long_name=\"Sky Condition Cloud Fraction\",\n",
" description=\"Cloud fraction calculated with the sky condition algorithm. \"+\\\n",
" \"0-8 = cloud coverage of up to 5 levels; 9 = obscuration. \" +\\\n",
" \"NaN = missing data or no detected layer.\"),) #added as 2D\n",
"\n",
"da_scht=xr.DataArray(data=np.array(DF_10min_scht,dtype=float).astype('float32'),\n",
" name=\"sky_condition_cloud_altitude\",dims=[\"time\",\"sky_condition_layer\"],\n",
" coords=dict(time=Time_steps_dt64_org,sky_condition_layer=sc_layer_levs),\n",
" attrs=dict(type=\"float32\",dimension=\"time, sky_condition_layer\", units=\"m\",\n",
" description = \"Cloud layer height calculated with the sky condition algorithm. \"+\\\n",
" \"Cloud layer height given for 1-5 sky condition layers; NaN if no layer detected. \"+\\\n",
" \"Vertical visibility is reported as height if obscuration (at sky_condition_cloud_fraction 9). \"+\\\n",
" \"Instrument height incorporated.\"),) #added as 2D\n",
"\n",
"\n",
"\n",
"#2D: dimension time/range\n",
"\n",
"da_bsprof=xr.DataArray(data=np.array(DF_10min_range,dtype=float).astype('float32'),\n",
" name=\"backscatter_profile\",dims=[\"time\",\"range_levels\"],\n",
" coords=dict(time=Time_steps_dt64_org,range_levels=range_levs),\n",
" attrs=dict(type=\"float32\",dimension=\"time, range_levels\", units=\"1 km-1 steradians-1\",\n",
" long_name=\"Backscatter Profile\", description=\"backscatter coefficient profile\"),) #added as 2D\n"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"15"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#merge all arrays into one\n",
"\n",
"ds_all=xr.merge([da_doy,da_year,da_month,da_day,da_hour,da_min,da_sec,\n",
" da_ceilrange,da_cloudcode,da_vertvis,da_high_sig,\n",
" da_baseht,da_scfrac,da_scht,da_bsprof])\n",
"\n",
"len(ds_all)"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Timestamp('2023-05-07 00:05:22')"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#get time range - start\n",
"Times_nomicrosec[0]"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Timestamp('2023-06-13 16:15:07')"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#get time range - end\n",
"Times_nomicrosec[-1]"
]
},
{
"cell_type": "code",
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
"metadata": {},
"outputs": [],
"source": [
"# modify attributes (start/end time and text in comments); \n",
"# note again geospatial bounds from the weather station data\n",
"\n",
"ds_all.attrs = {\"Conventions\" :\"CF-1.8\",\n",
" \"source\" : \"Ceilometer\",\n",
" \"instrument_model\" : \"Vaisala Ceilometer CL31\",\n",
" \"creator_name\" : \"Sonja Murto\",\n",
" \"creator_email\" : \"sonja.murto@misu.su.se\",\n",
" \"creator_url\" : \"https://orcid.org/0000-0002-4966-9077\",\n",
" \"institution\" : \"Stockholm University\", \n",
" \"processing_software\" : \"Matlab (for creating the matlab file) and a jupyter notebook script (netCDF)\",\n",
" \"sampling_interval\": \"original 30s; here 10min averages\", \n",
" \"product_version\" : \"v01\",\n",
" \"last_revised_date\" : \"2024-05-31T15:00:00\", \n",
" \"project\" : \"ARTofMELT\",\n",
" \"project_principal_investigator\" : \"Michael Tjernström\",\n",
" \"project_principal_investigator_email\" : \"michaelt@misu.su.se\",\n",
" \"project_principal_investigator_url\" : \"https://orcid.org/0000-0002-6908-7410\", \n",
" \"acknowledgement\" : \" Knut och Alice Wallenbergs Stiftelse, Grant 2016-0024\",\n",
" \"platform\" : \"Swedish Icebreaker Oden\",\n",
" \"platform_type\" : \"On Oden's 7th deck above the bridge\",\n",
" \"deployment_mode\" : \"ship\",\n",
" \"title\" : \"Ceilometer cloud base height, vertical visibility and backscatter profiles\",\n",
" \"feature_type\" : \"time series\", \n",
" \"time_coverage_start\" : \"2023-05-07T00:05:22\",\n",
" \"time_coverage_end\" : \"2023-06-13T16:15:07\",\n",
" \"geospatial_bounds\" : \"80.52392166666667N, -3.8737749999999997E, 78.04355166666666N, 15.660881666666667E\",\n",
" \"platform_altitude\" : \"Located at approximately 25 m a.s.l\",\n",
" \"location_keywords\": \"Oden, Arctic Ocean, Fram Strait, atmosphere, on the ship\",\n",
" \"comments\" : \"This file consists of 10 min averages of ceilometer data \" +\\\n",
" \"measured with the Vaisala Ceilometer CL31 that was located on the 7th deck, \"+\\\n",
" \"above the bridge (at approximately 25m).\" + \\\n",
" \"The sky condition measurements are time averages to represent an area average. \" + \\\n",
" \"The vertical resolution is 10m * 770, but the measurement height (25m) is included in the backscatter profile ranges, \" + \\\n",
" \"as well as in the cloud base heights (cloud_base_altitude and sky_condition_cloud_altitude). \" + \\\n",
" \"Geospatial bounds are taken from the gps location of the weather station dataset located on Oden. \" +\\\n",
" \"Time variables month, day, hour, minute and second are approximated to the nearest second. \" +\\\n",
" \"Data produced by Sonja Murto. See the document - Readme_CL.txt - for more details.\"}\n",
" "
]
},
{
"cell_type": "code",
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
"<defs>\n",
"<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
"<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"</symbol>\n",
"<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
"<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"</symbol>\n",
"</defs>\n",
"</svg>\n",
"<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
" *\n",
" */\n",
"\n",
":root {\n",
" --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
" --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
" --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
" --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
" --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
" --xr-background-color: var(--jp-layout-color0, white);\n",
" --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
" --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
"}\n",
"\n",
"html[theme=dark],\n",
"body.vscode-dark {\n",
" --xr-font-color0: rgba(255, 255, 255, 1);\n",
" --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
" --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
" --xr-border-color: #1F1F1F;\n",
" --xr-disabled-color: #515151;\n",
" --xr-background-color: #111111;\n",
" --xr-background-color-row-even: #111111;\n",
" --xr-background-color-row-odd: #313131;\n",
"}\n",
"\n",
".xr-wrap {\n",
" display: block;\n",
" min-width: 300px;\n",
" max-width: 700px;\n",
"}\n",
"\n",
".xr-text-repr-fallback {\n",
" /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
" display: none;\n",
"}\n",
"\n",
".xr-header {\n",
" padding-top: 6px;\n",
" padding-bottom: 6px;\n",
" margin-bottom: 4px;\n",
" border-bottom: solid 1px var(--xr-border-color);\n",
"}\n",
"\n",
".xr-header > div,\n",
".xr-header > ul {\n",
" display: inline;\n",
" margin-top: 0;\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-obj-type,\n",
".xr-array-name {\n",
" margin-left: 2px;\n",
" margin-right: 10px;\n",
"}\n",
"\n",
".xr-obj-type {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-sections {\n",
" padding-left: 0 !important;\n",
" display: grid;\n",
" grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
"}\n",
"\n",
".xr-section-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-section-item input {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-item input + label {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label {\n",
" cursor: pointer;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label:hover {\n",
" color: var(--xr-font-color0);\n",
"}\n",
"\n",
".xr-section-summary {\n",
" grid-column: 1;\n",
" color: var(--xr-font-color2);\n",
" font-weight: 500;\n",
"}\n",
"\n",
".xr-section-summary > span {\n",
" display: inline-block;\n",
" padding-left: 0.5em;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-summary-in + label:before {\n",
" display: inline-block;\n",
" content: '►';\n",
" font-size: 11px;\n",
" width: 15px;\n",
" text-align: center;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label:before {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label:before {\n",
" content: '▼';\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label > span {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-summary,\n",
".xr-section-inline-details {\n",
" padding-top: 4px;\n",
" padding-bottom: 4px;\n",
"}\n",
"\n",
".xr-section-inline-details {\n",
" grid-column: 2 / -1;\n",
"}\n",
"\n",
".xr-section-details {\n",
" display: none;\n",
" grid-column: 1 / -1;\n",
" margin-bottom: 5px;\n",
"}\n",
"\n",
".xr-section-summary-in:checked ~ .xr-section-details {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-array-wrap {\n",
" grid-column: 1 / -1;\n",
" display: grid;\n",
" grid-template-columns: 20px auto;\n",
"}\n",
"\n",
".xr-array-wrap > label {\n",
" grid-column: 1;\n",
" vertical-align: top;\n",
"}\n",
"\n",
".xr-preview {\n",
" color: var(--xr-font-color3);\n",
"}\n",
"\n",
".xr-array-preview,\n",
".xr-array-data {\n",
" padding: 0 5px !important;\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-array-data,\n",
".xr-array-in:checked ~ .xr-array-preview {\n",
" display: none;\n",
"}\n",
"\n",
".xr-array-in:checked ~ .xr-array-data,\n",
".xr-array-preview {\n",
" display: inline-block;\n",
"}\n",
"\n",
".xr-dim-list {\n",
" display: inline-block !important;\n",
" list-style: none;\n",
" padding: 0 !important;\n",
" margin: 0;\n",